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ABSTRACT

The main aim of this study, is to evaluate the seismic reliability of steel concentrically
braced frame (SCBF) structures optimally designed in the context of performance-based
design. The Monte Carlo simulation (MCS) method and neural network (NN) techniques
were utilized to conduct the reliability analysis of the optimally designed SCBFs. Multi-
layer perceptron (MLP) trained by back propagation technique was used to evaluate the
required structural responses and then the total exceedence probability associated with the
seismic performance levels was estimated by the MCS method. Three numerical examples
of 5-, 10-, and 15-story SCBFs with fixed and optimal topology of braces are presented and
their probability of failure was evaluated considering the resistance characteristics and the
seismic loading of the structures. The numerical results indicate that the SCBFs with optimal
topology of braces were more reliable than those with fixed topology of braces.
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1. INTRODUCTION

One of the main concerns in structural engineering is the design of cost-efficient structures
with acceptable performance against earthquakes. On the other hand, performance-based
design (PBD) [1] is a modern seismic design procedures for the rehabilitation of existing
structures and the seismic design of new ones. So, structural optimization methodologies
have been developed in the last decades and structural performance-based design
optimization (PBDO) has become a topic of growing interest [2-10] in the field of structural
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engineering. As can be seen from literature, metaheuristics are the best choice to deal with
the PBDO problems, because they are powerful algorithms for exploring and exploiting the
design space and are also simple for computer implementation.

The intrinsic random nature of material properties and actions must be actually
considered in the design process of structures and the probability of failure must be
computed from the joint probability distribution of the random variables associated with the
action and resistance. Theory and methods for structural reliability are actually useful tools
for evaluating the safety of complex structures. Recent developments allow anticipating that
their application will gradually increase, even in the case of common structures [11]. Monte
Carlo Simulation (MCS) is a simulation method for reliability analysis. The main concept of
simulation techniques is to simulate a probabilistic phenomenon numerically and then
observe the frequency of a certain event in that phenomenon [12]. These simulation
techniques are easy to implement, but in the case of small failure probabilities, the number
of simulations required is extremely large which greatly increases the computational cost of
these simulation techniques. Thus, the MCS method can be applied to many practical
problems that allows direct consideration of any type of probability distribution for random
variables. This method is able to calculate the probability of failure with the desired
precision. However, its computational burden is high because the MCS requires a large
number of structural analyses [13]. In the current work, the reliability theory and PBD
approach were simultaneously utilized to evaluate the reliability index of optimally designed
steel concentrically braced frame (SCBF) structures for earthquake loadings. In order to
address the uncertainties in material properties and seismic actions, structural nonlinear
responses were required to perform reliability analysis using the MCS method. As a result,
the computational cost required for this process will be expensive. One of the best
candidates for reducing the computational burden of the reliability analysis is neural network
(NN) techniques. In this study, feed-forward multi-layer perceptron (MLP) trained by back
propagation technique [14] in MATLAB [15] platform was used to evaluate the required
structural responses.

Reliability analysis of the 5-, 10-, and 15-story SCBFs with fixed and optimal topology
of braces designed in the framework of PBD was conducted in the present study. For each
optimally designed structure a NN model is trained to provide the data required to perform
the reliability analysis using the MCS method. The obtained numerical results demonstrate
that the reliability index of the SCBFs with optimal topology of braces were higher
compared to the SCBFs with fixed topology of braces.

2. OPTIMAL SEISMIC DESIGN OF SCBF STRUCTURES

In the present work, immediate occupancy (10), life safety (LS) and collapse prevention
(CP) are considered as the performance levels and three hazard levels with 50%, 10% and
2% probability of exceedance in 50 year period (50%/50y, 10%/50y, and 2%/50y) are
adopted according to the hazard model of Standard No. 2800 [16] as shown in Fig. 1. The
nonlinear static pushover analysis is performed to quantify seismic induced nonlinear
response of structures according to [1]. In this method the structure is pushed with a specific
distribution of the lateral loads until the target displacement is reached. OpenSees [17] is
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utilized to conduct the pushover analysis. In addition, to capture the buckling behavior of
braces, uniaxial phenomenological model [18] was used.
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Figure 1. Acceleration response spectra of hazard levels

The aim of the PBDO process is to minimize the weight of the structure under some
constraints. For a SCBF consisting of ne members that are collected in ng design groups, the
discrete optimization problem can be formulated as follows:

Minimize: w(x)=3" 5AS L, (1)
i=1 j=L
Subject to: g, (X)<0, k=12,---,nc 2

where X is vector of design variables including cross-section of elements and placement of
braces in the frame; w represents the weight of the frame, pi and A; are weight of unit volume
and cross-sectional area of the ith group section, respectively; nm is the number of elements
collected in the ith group; L; is the length of the jth element in the ith group; gk(X) is the kth
behavioral constraint.

Three types of constraints including geometric, strenght and PBD constraints were
checked during the optimization process. The geometric constraints must be satisfied in
framing joints to meet the practical demands of construction. The strength constraints of
structural elements were checked for gravity loads to perform serviceability checks based on
AISC-LRFD [19] design code. The PBD constraints including inter-story drift, plastic
rotation of columns and plastic deformation of braces were cheched according to FEMA-356
[1] and ASCE 41-13 [20] to ensure the desired seismic performance of the structures.

Over the recent years, many efficient metaheuristic algorithms have been proposed to
deal with the complex structural optimization problems such as colliding bodies
optimization (CBO) [21], enhanced colliding bodies optimization (ECBO) [22], and center
of mass optimization (CMO) [10]. The CMO was proposed based on the concept of center
of mass in physics. This metaheuristic algorithm is an efficient and powerfull tool to tackle
the PBDO problems of structures.
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3. RELIABILITY ANALYSIS

Obviously, modelling uncertainty plays an important role in evaluating the seismic
reliability of structures. There are numerous sources of uncertainties which may seriously
affect the structural seismic performance. Among these sources, material properties and
seismic loads are involved as the uncertain variables in the current work. The structural
nonlinear analysis should be performed to evaluate the probabilistic structural response.
Then, limit state functions associated with each performance level should be calculated
using the probabilistic structural response. As a result, the non-performance probability
related to each performance level can be evaluated using the MCS method. Overall, the
MCS is a simple and powerful tool for solving a wide range of reliability problems.
However, using it to assess very low probabilities of failure requires a large number of
structural analyses to be conducted that can be excessively time consuming. In order to
address this critical issue, an efficient NN model in conjunction with the MCS is used in this
study to significantly reduce the computational cost of seismic reliability assessment of
structures. the employed NN model is feed-forward multi-layer perceptron (FFMLP) trained
by back propagation technique using neural network toolbox of MATLAB. The following
subsections briefly describe the mathematical background of MCS and FFMLP.

3.1 Monte Carlo simulation
To solve reliability problems, random variables must be defined. For the SCBFs optimally
designed in the framework of PBD, the random variables are considered as follows:

U={E f, S© Si s¢} 3)

where U is vector of random variables; E and f,, are respectively Young’s modulus and yield
strength of steel materials considered for the uniaxial phenomenological model; S°; SL$ and
SEP are spectral acceleration of the hazard levels of the optimally designed SCBFs.

A reliability problem is normally formulated using a limit state function. Limit state
function for each performance level is defined using capacity and demand as follows:

Gi(U) = R, —RY(U) ,i=10;LS;CP (4)

where G is a limit state function; R, is the limiting value for a seismic response R(Z).

In the reliability analysis performed in this work, the maximum inter-story drift ratios at
the 10, LS and CP performance levels are selected as the structural seismic responses, and
subsequently, the considered limit state functions for the performance levels are as follows:

G'O(U) = 0.005 — 8§12, (U) (5)
GLS(U) = 0.015 — 815, (U) (6)

GCP(U) = 0.020 — 8CE (1) (7)
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where the limiting values for the maximum inter-story drift ratios at the 10, LS and CP
performance levels are taken as 0.005, 0.015, and 0.020 [1], respectively; 619, 655 ., and
SEP . are the maximum inter-story drift ratios at the performance levels, respectively.

The non-performance probability, P, is defined as a function of the limit state functions
corresponding to a given performance level. Estimation of the non-performance probability
in the time-invariant domain requires the evaluation of the multiple integral over the failure
domain, G(U) <0, as follows [23]:

Pr=[f ..  Fy(U)au ®)

where F;(U) is the joint probability density function of U.
As in the present work, only one limit state function is defined for each performance
level, the total exceedence probability, Pf;, for each performance level is defined as follows:

PFL =P(GY(U) <0),i=10;LS;CP (9)

Calculating the total exceedence probability, PFL, requires the integration of a multi-
normal distribution function [23]. However, this integral can be estimated by the MCS
method. In this study, the MCS method is utilized simultaneously for all limit state functions
of the performance levels. The MCS method allows the determination of an estimate of PFL,
given by:

PFL = % n ANU) i =10;LS;CP (10)
i =10;LS;CP (11)

;Lo if GI(U) <0
f_{o.o if GIU)>0

where n is the number of independent samples generated based on the probability
distribution for each random variable for the MCS implementation.

Implementation of the MCS requires a large number of structural nonlinear analyses. The
MCS is a time consuming process because of high computational cost of pushover analysis.
To reduce the computational burden of MCS, a FFMLP NN model is trained to predict the
required structural seismic responses.

3.2 FFMLP NN model

The FFMLP model is trained with back propagation (BP) technique, which is a gradient
descent optimization algorithm that adjusts the weights in the steepest descent direction
according to the following equation:

Wepr = We =V, (12)

where W, , V, and n, are the weight matrix, the current gradient matrix learning rate,
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respectively at iteration t.

the BP technique uses Levenberg-Marquardt (LM) [14] algorithm to approach second-
order training speed without having to compute the Hessian matrix. In the LM algorithm the
weights updating is achieved as follows:

Wipr =W, — UT] + al]_lfTET (13)

where J is the Jacobian matrix that contains first derivatives of the network errors with
respect to the weights; Er is a vector of network errors; « is a correction factor; and I is
identity matrix.

One of the techniques used to prevent overfitting is regularization [14] in which the
performance function of the network is modified by adding a term that consists of the mean
of the sum of squares of the network weights as:

mse, =y (%zm (Erk)z) + %ZTZ(WM)Z (14)

k=1

where y and nw are the performance ratio and number of network weights, respectively; m
is the size of Ery,.

The input vector of the FFMLP model trained in the current study is the vector of random
variables U and the components of its output vector are predicted maximum inter-story drifts
at performance levels. The total number of 15 hidden layer neurons with tangent sigmoid
transfer function are considered and the architecture of the network is shown in Fig. 2.

Inputs
E Hidden Layer Output Layer Outputs
10
f y 619
LS
SLO - 5y
S é S SCP
CcP
Sa 15 3

Figure 2. Architecture of the FFMLP model

To evaluate the prediction accuracy of the trained FFMLP NN model in training and
testing modes, mean absolute percentage error (MAPE) between the ns number of actual
(85, 4,) and predicted (612) responses is computed as follows:

S;nax_‘szln

APE} = | , 1=10;LS;CP , j=12,..,ns (15)

i
Sinax

J
100

MAPE! = 'S APE} , i = 10;LS; CP (16)

ns <J
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4. NUMERICAL RESULTS

Three illustrative examples including 5-, 10-, and 15-story SCBFs with fixed and optimal
topology of braces are selected from [24] in which these structures have been optimally
designed in the context of PBD. The SCBFs with discrete fixed topology are denoted by
DFT the structures with discrete optimal topology are denoted by DOT. The MCS-based
reliability analysis of the optimally designed SCBFs is carried out using the probability
density function, mean value and standard deviation of random parameter given in Table 1.

Table 1: Properties of random variables

Random Variable Probability density function Mean value Standard deviation

E Normal 200 GPa 20.0 GPa
fy Normal 345 MPa 34.5 MPa
sto Lognormal slo 0.15 x Sk
SkLS Lognormal SkLS 0.15 X SkS
SEP Lognormal SEP 0.15 x S¢P

4.1 First example: 5-storey SCBF

All the 5-story SCBFs, optimally designed in [24], in DFT and DOT design groups are

shown in Fig. 3.

12459.2 kg 12469.1 kg
DFTI DFT2
11015.4 kg 11056.6 kg 11077.7 kg 11077.7 kg 11077.7 kg
DOT1 DOT2 DOT3 DOT4 DOTS
11015.4 kg 11056.6 kg 11077.7 kg 11077.7 kg 11077.7 kg
DOT6 DOT7 DOTS DOTY DOTI10

Figure 3. Optimally designed 5-story SCBFs
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For each optimally designed 5-story SCBF, a FFMLP neural network is trained to predict
the required seismic responses. A total number of 10,000 samples are generated and 8,000
and 2,000 samples are used for training and testing, respectively. MAPE values in training
and testing modes are given in Table 2 for all the structures. These results show that the
trained NN models have acceptable prediction accuracy.

Table 2: MAPE of different FFMLP NNs trained for 5-story SCBF

510 5LS 6CP

SCBF S : S _ — _

Training Testing Training Testing Training Testing
DFT1 9.23 9.53 3.33 3.02 2.19 2.61
DFT2 9.24 9.49 3.32 3.30 2.14 2.15
DOT1 10.91 10.53 3.84 3.81 2.64 2.65
DOT2 10.94 11.36 3.90 4.04 2.72 2.62
DOT3 9.91 9.71 3.55 3.49 2.92 2.79
DOT4 11.75 11.09 4.08 4.18 3.06 3.05
DOT5 10.39 10.49 3.45 3.47 2.02 2.08
DOT6 10.38 10.04 3.38 3.34 2.40 2.46
DOT7 7.33 11.68 2.74 3.11 2.13 1.92
DOT8 9.48 9.37 3.28 3.15 2.17 2.24
DOT9 11.5 11.05 3.52 3.37 2.25 2.29
DOT10 10.86 10.60 3.63 3.75 2.35 2.33

Reliability analysis of all the optimally designed 5-story SCBF is performed by using
MCS method and the trained FFMLP NN models considering n=10° samples. The values of
PFg (%) obtained for all the 5-story SCBFs at performance levels are compared in Fig. 4.

mIO mELS mCP

2.633

2.4035

0.018
0.011
0.00753
0.00152
0.002

I 0548
0.02
0.007
[ 0.563

DFT1 DFT2 DOT1 DOT2 DOT3 DOT4 DOT5 DOT6 DOT7 DOT8 DOT9 DOT10

Figure 4. PF; (%) for optimally designed 5-story SCBFs at 10, LS and CP performance levels
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The results of reliability assessment show that the highest safety against uncertainties
belongs to the DOT1 structure which its PF is 0.0075%.

4.2 Second example: 10-storey SCBF

All the 10-story SCBFs, optimally designed in [24], in DFT and DOT design groups are

shown in Fig. 5.

28140.0 kg

DOTI
29010.8 kg

28889.6 kg

DOT3
29293.2 kg

37617.0 kg

DFT2
28897.3 kg

29316.4 kg

Figure 5. Optimally designed 10-story SCBFs

28968.6 kg

DOTS
29320.4 kg
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A FFMLP neural network is trained to predict the seismic responses of each optimally
designed 10-story SCBF. A total of 10,000 samples are produced and 8,000 and 2,000
samples are used for training and testing, respectively. Table 3 reports the MAPE values in
training and testing modes for all the structures indicating that the trained NN models have
acceptable prediction accuracy.

Table 3: MAPE of different FFMLP NNs trained for 10-story SCBF

610 51‘5 6CP

SCBF ———+"—— T T

Training Testing Training Testing Training Testing
DFT1 4.63 4.76 4.90 4.84 7.56 7.44
DFT2 6.67 6.62 3.33 3.33 6.57 6.82
DOT1 7.29 7.42 4.13 4.29 7.26 7.92
DOT2 7.66 7.62 3.59 3.56 5.56 5.63
DOT3 8.73 8.16 3.48 3.38 3.18 3.19
DOT4 9.39 9.19 3.52 4.06 381 3.98
DOT5 8.04 7.83 3.26 3.14 2.95 291
DOT6 8.58 8.44 3.42 3.35 3.77 3.45
DOT7 6.54 6.24 4.17 3.60 7.91 7.42
DOT8 8.07 8.05 3.36 3.38 3.39 3.42
DOT9 8.91 8.67 3.73 3.75 3.98 3.76
DOT10 9.28 9.15 3.86 4.25 4.50 4.87

Reliability analysis of all the optimally designed 10-story SCBF is performed by using
MCS method and the trained FFMLP NN models considering n=10° samples. The values of
PF; (%) obtained for all the 10-story SCBFs at performance levels are compared in Fig. 6.
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Figure 6. PF; (%) for optimally designed 10-story SCBFs at 10, LS and CP performance levels
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The results of reliability assessment show that the highest safety against uncertainties
belongs to the DOT?2 structure which its PF is 7.07%.

4.3 Third example: 15-storey SCBF
All the 15-story SCBFs, optimally designed in [24], in DFT and DOT design groups are

shown in Fig. 7.

57144.3 kg

DOTI
61145.0 kg

DOT6

70029.5 kg 68029.0 kg
. DFTI. . IDI'TE .
57503.1 kg 58893.9 kg 60296.8 kg
DOT2 DOT3 DOT4
61165.5 kg 61369.4 kg 61704.5 kg

DOT? DOTS8 DOTY

60836.2 kg

DOTS
61891.2 kg

DOTIO

Figure 7. Optimally designed 15-story SCBFs
In order to evaluate the seismic responses of optimally designed 15-story SCBF, A
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FFMLP neural network is trained for each structure. A total of 10,000 samples are produced
and 8,000 and 2,000 samples are used for training and testing, respectively. For all the
structures, the MAPE values in training and testing modes are given in Table 4. As seen, the
prediction accuracy of the trained NN models is acceptable.

Table 4: MAPE of different FFMLP NNs trained for 15-story SCBF

610 6LS 6CP

SCBF S _ S _ R— _

Training Testing Training Testing Training Testing
DFT1 5.08 5.07 3.90 3.97 8.40 7.94
DFT2 3.01 3.12 3.41 3.58 5.43 4.83
DOT1 5.59 3.61 4,72 3.09 6.45 3.50
DOT?2 5.22 5.13 3.39 3.64 7.61 7.95
DOT3 4.95 4,74 3.65 3.27 8.60 8.26
DOT4 5.38 5.41 4.35 411 4.46 3.92
DOT5 6.62 6.44 5.65 5.03 8.43 9.69
DOT6 6.33 5.95 4.94 3.87 11.73 10.64
DOT7 5.61 5.47 4.65 4,78 10.87 10.86
DOT8 7.01 6.69 2.57 2.46 3.65 3.69
DOT9 4.61 4.56 2.70 2.59 4.16 4,22
DOT10 8.41 7.58 4.96 4.81 8.62 9.02

Reliability analysis of all the optimally designed 15-story SCBF is performed by using
MCS method and the trained FFMLP NN models considering n=10° samples. The values of
PF; (%) obtained for all the 15-story SCBFs at performance levels are compared in Fig. 8.

37.35
37.17
37.86

33.02

19.67
19.91

DFT1 DFT2

33.43

16.15

2.72
4.03

DOT1

27.60

14.44

DOT2

14.56

5.85

3.35

DOT3

32.17

13.75
14.93

8.16

5.60

16.36

DOT4 DOT5
Figure 8. PF; (%) for optimally designed 15-story SCBFs at 10, LS and CP performance levels
The results of reliability assessment show that the highest safety against uncertainties
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23.11
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belongs to the DOT®6 structure which its PF is 13.66%.

5. CONCLUSIONS

Reliability analysis of optimally designed SCBF structures was conducted in the present
study. For this purpose, a FFMLP NN incorporated MCS method was proposed. Three
numerical examples of 5-, 10- and 15-story SCBFs were selected from [24] where 12
optimal designs have been obtained for each design example in the PBD framework. A total
of 36 FFMLP NN model were trained in the current study for predicting the seismic
responses of the optimally designed SCBFs in the framework of MCS. To perform the
reliability analysis, limit state functions were defined on the maximum inter-story drift ratios
at the 10, LS and CP performance levels. The main findings of this study were summarized
as follows:

e The results of the reliability analyses demonstrate that the maximum value of PFy
for 5-, 10- and 15-story SCBFs in DOT design group is 2.63%, 14.13% and
38.58%, respectively.

e PFg for 5-, 10- and 15-story optimally designed SCBFs is depicted in Fig. 9. It
can be concluded that the seismic reliability of 15-story optimally designed
SCBFs is questionable.

e Some SCBFs with optimal topology of braces are more reliable than those with
fixed topology of braces.

e The minimum values of PFp which show the safest structures against
uncertainties are 0.0075%, 7.07% and 13.66% for 5-, 10- and 15-story SCBFs,
respectively. The safest 5-, 10- and 15-story optimally designed SCBFs are
shown in Fig. 10.
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Figure 9. PFy (%) for optimally designed 5-, 10- and 15-story SCBFs
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