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ABSTRACT

Metaheuristic algorithms have become increasingly popular in recent years as a method for
determining the optimal design of structures. Nowadays, approximate optimization methods
are widely used. This study utilized the Self Adaptive Enhanced Vibrating Particle System
(SA-EVPS) algorithm as an approximate optimization method, since the EVPS algorithm
requires experimental parameters. As a well-known and large-scale structure, the 582-bar
spatial truss structure was analyzed using the finite element method, and optimization
processes were implemented using MATLAB. In order to obtain weight optimization, the
self-adaptive enhanced vibration particle system (SA-EVPS) is compared with the EVPS
algorithm.

Keywords: Size optimization; Self-Adaptive algorithm; SA-EVPS algorithm; 582-bar spatial
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1. INTRODUCTION

A substantial community of researchers from many fields, particularly in engineering, has
recently expressed interest in metaheuristic algorithms. In addition to their ability to obtain
near-optimal solutions for any problem, including continuous and discrete problems,
metaheuristic algorithms are practical optimization methods since they can easily be applied
to a wide range of problems without gradient information. In order to provide more efficient
answers in a reasonable amount of time, metaheuristic algorithms present methods that
result in more efficient answers. Some of these methods include:
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Harmony Search (HS) [1], Coronavirus Herd Immunity Optimizer (CHIO) [2], Charged
System Search Optimization [3], Su nFlower Optimization (SFO) algorithm [4], Tiki-Taka
Algorithm (TTA) [5], Volleyball premier league algorithm [6], Simplified Dolphin
Echolocation optimization (SDE) [7], Modified Dolphin Monitoring (MDM) [8], Artificial
Algae Algorithm (AAA) [9], Harris hawks optimization [10], Lichtenberg algorithm [11],
Water evaporation Optimization (WEO) [12], Sine Cosine Algorithm (SCA) [13], Water
Strider Algorithm (WSA) [14], Water Wave Optimization (WWO) [15], and Lichtenberg
Algorithm (LA) [16].

Metaheuristic Optimization Algorithms are developed to solve problems that are difficult
to solve numerically. Nature is the most common source of inspiration for most of them.
Exploration and exploitation are generally competing search mechanisms in Metaheuristic
Optimization Algorithms. Exploration abilities should be balanced with exploration in order
to produce a well-organized metaheuristic optimization algorithm [17]. Simple metaheuristic
algorithms can be simulated, proposed, hybridized, or improved by computer scientists. As a
result, other scientists can learn and apply metaheuristic algorithms quickly. A metaheuristic
is flexible if it can be applied to different problems without requiring any special changes in
its structure. Unlike other methods, metaheuristic algorithms tend to assume problems as
black boxes. Metaheuristic algorithms consider only inputs and outputs of a system.
Designers need only know how to represent their problems for metaheuristic algorithms.
Most metaheuristic algorithms are not derivation-based. Metaheuristic algorithms optimize
problems stochastically, unlike gradient-based optimization. To find the optimum, the
optimization process starts with random solutions. Metaheuristic algorithms are highly
appropriate for problems with expensive derivatives or unknowns. Metaheuristic algorithms
are better than conventional optimization techniques at avoiding local optima. Metaheuristic
algorithms are stochastic, thus avoiding local stagnation and searching the entire search
space extensively.

Computer scientists can simulate, propose, hybridize, or improve simple metaheuristic
algorithms. By utilizing metaheuristic algorithms, other scientists will be able to learn and
apply them more quickly. The flexibility of a metaheuristic is determined by its ability to be
applied to a variety of problems without requiring any special structural modifications. In
contrast to other methods, metaheuristic algorithms tend to assume that problems are black
boxes. There is no consideration of the inputs and outputs of a system in metaheuristic
algorithms. A designer needs only be familiar with the way metaheuristic algorithms
represent their problems. In order to determine the optimal solution, the optimization process
begins with random solutions. Because metaheuristic algorithms are stochastic, they avoid
local stagnation and search the entire search space thoroughly [17].

For a system with a single degree of freedom, the Vibrating Particle Systems (VPS)
algorithm models viscous damping [18]. This algorithm examines the gradual movement of
particles towards their equilibrium position. By modifying some parameters of the VPS
algorithm, the EVPS algorithm was developed in order to improve the performance of VPS
[19]. EVPS has been used to solve a variety of optimization problems, some of which are
listed below:

Based on reliability, Hosseini et al. [20] developed a method of optimizing dome truss
structures. In order to illustrate the process of Deterministic Design Optimization (DDO)
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and Random Binary Design Optimization (RBDO), they presented a flowchart. In addition,
random variables are used to represent uncertain parameters in the evaluation of the
reliability of the structure. Paknahad et al. presented a method for determining the practical
parameters of the EVPS algorithm and developed a self-adaptive algorithm called SA-EVPS
[21]. Kaveh et al. [22] applied the Modified Dolphin Monitoring (MDM) operator to the
EVPS algorithm to evaluate three well-known steel frame structures. The study of Kaveh et
al. [23] aimed to improve the EVPS algorithm by reducing the influence of regulatory
parameters. As a result of a reduction in calculations associated with the former methods of
damage detection, Kaveh et al have proposed a new objective function for detecting
damages. The first phase of the process involves calculating natural frequencies, and the
second phase involves evaluating mode shapes [24]. A reliability-based approach to
designing concentric bracing layouts for 3D steel frames was developed by Haji Mazdarani
et al. They used an objective function to reduce the total weight, and the layout of the braces
was used as a variable in the optimization process [25]. As a result of nonlinear time history
analysis, Kaveh et al. [26]. presented a new objective function for the optimal design of
buckle-restrained braced frames (BRBFs) By using metaheuristic algorithms based on the
displacement of nodes, Hosseini et al. calculated the reliability index of four transmission
line towers and compared the results with Monte Carlo Simulations (MCS) Hosseini et al
optimized two space trusses based on modulus of elasticity, yield stress, and cross-sectional
uncertainties to increase response robustness and decrease weight [28]. Hosseini et al
compared the reliability indices of Deterministic Design Optimization (DDO) and
Reliability-Based Design Optimization (RBDO) for three large-scale dome trusses [29].
Kaveh and Rahami [30] used genetic algorithm and force method for optimal design.

In the EVPS algorithm, there are some practical parameters, containing ¢, p, wi, Wz,
HMCR, PAR, Neighbor and Memory size. According to the SA-EVPS algorithm, these
parameters are set according to each problem. As a result, the SA-EVPS algorithm will be
enhanced in terms of convergence speed and accuracy of the answer, as well as its ability to
escape local optima. An optima. An evaluation of the SA-EVPS algorithm was conducted
using the 582-bar spatial truss structure as a well-known benchmark as well as a large scale
structure, and the results will be compared with those of the EVPS algorithm.

The paper is organized as follows: Section one contains an introduction. A brief
explanation of the EVPS and SA-EVPS algorithms is provided in the second section. The
third section consists of the optimal design of the 582-bar spatial truss structure. In the final
section of the paper, the conclusion is presented.

2. AN EXPLANATION OF THE EVPS AND SA-EVPS ALGORITHMS

The EVPS algorithm is an improved version of the VPS algorithm that had been presented
in 2018 by Kaveh et al. [31]. This algorithm exhibits the following performance
characteristics:

In the first stage, the allowable range of the initial population created by Eq. (1) should
be considered.
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X'j = Xmin + rand'(xmax - Xmin) (1)

where x! is the jth variable of the ith particle; Xmax and Xmin are the upper and lower
bounds of design variables in the search space, respectively. An additional parameter,
called memory, maintains the number of memory sizes from the best positions achieved by
the population. The effect of damping level on vibration is described by Eq. (2).

b :[_ iter J_ )
iter

where iter is the current number of iterations; itermax is the total number of iterations and « is
a parameter with a constant value; £1 is used randomly. Finally, the new positions of the
population are updated by Eq. (3).

[D.Arand1+OHB'|  (a)
x) =4[ D.Arand2+GP' | (b) @A)
| D.Arand3+BP’ | (c)

where OHB, GP, and BP are determined independently for each of the variables, and A is
defined as follows:

(+1)(OHB' - x/) (a)

A=1(ED)(GP -x)  (b) 4)

(+1)(BP —x/) (c)

I+

I+

And we should have @, + @, + w, =1 as defined in [31]. The coefficients w1, w2, and w3

are the relative importance for OHB, GP, and BP, respectively; randl, rand2, and rand3
are random numbers uniformly distributed in the [0, 1] range. The EVPS algorithm
makes use of eight variables, including « , p, w1, w2, HMCR, PAR, Neighbor, and
Memory_size, which are experimentally determined. In spite of the fact that these
parameters are considered specific values by default in the EVPS algorithm, they are set
as constants of 0.05, 0.2, 0.3, 0.3, 0.95, 0.1, 0.1 and 4, respectively. To implement the
SA-EVPS algorithm, first all 8 parameters are optimized using the EVPS algorithm, and
then the main optimization is conducted as illustrated in Fig. 1.
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Figure 1. Schematic illustration of the SA-EVPS algorithm [25].

3. NUMERICAL EXAMPLE

Here, the EVPS and SA-EVPS algorithms are used to compare the benchmark structure,
which is a 582-bar spatial truss structure. Each example is optimized using 30 independent
runs. In all problems, the population size is 30. In the EVPS algorithm, p, w1, w2, HMCR,
PAR, Neighbor and Memory_size are 0.05, 0.2, 0.3, 0.3, 0.95, 0.1, 0.1, and 4, respectively.
As a point of clarification, EVPS and SA-EVPS both used 64 as the population size. Fig. 2
illustrates a schematic of a 582-bar tower truss with a height of 80 meters.
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Figure 2. Hllustration of the 582-bar spatial truss from three view

According to the symmetry of the tower around the x-axis and y-axis, the 582 members
are grouped into 32 independent size variables. At all nodes of the tower, lateral loads of 5.0
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kN are applied in both x and y directions and vertical loads of -30 kN are applied in the z-
direction. Size variables are determined by selecting 137 economical steel sections from a
list of W-shape profiles based on their area and radii of gyration. 39.74 cm? and 1387.09 cm?
are taken as the lower and upper bounds of the size variables. According to ASD-AISC [32],
the members are subject to stress limitations. In addition, nodal displacements should not
exceed 8.0 cm or 3.15 in. in any direction. According to the ASD-AISC design code
provisions [32], the maximum slenderness ratio for tension members is 300, and it is
recommended to be 200 for compression members. The parameters of the SA-EVPS
algorithm that are self-adaptive (optimized) can be found in Table 1. In Table 2, the results
obtained by EVPS and SA-EVPS algorithms are presented. In comparison with the EVPS
algorithm, the SA-EVPS algorithm achieves better results in the best, worst, average, and
standard deviation (STD) of answers. Fig.3 (a) illustrates the demand to capacity of stress
ratios (DCR) of all elements of the 582-bar spatial truss structure. Fig. 3 (b) shows the
deformed shape (a hundredfold) of the 582-bar spatial truss structure resulting from the SA-
EVPS algorithm, in comparison to the original 582-bar spatial truss. Fig. 4 shows the
convergence diagrams for EVPS and SA-EVPS algorithms for 30 independent runs.

Table 1: SA-EVPS algorithm parameters that are self-adaptive (optimized) for 582-bar spatial

truss
Parameter Value
1 a 0.12091
2 p 0
3 W1 0.42038
4 Wo 0.19072
5 HMCR 0.99836
6 PAR 0.28643
7 Neighbor 0
8 Memory size 2

Table 2: Evaluation of EVPS and SA-EVPS results for the 72-bar spatial truss

Element Optimal cross-sectional areas Element Optimal cross-sectional areas
Group EVPS SA-EVPS Group EVPS SA-EVPS
1 W8X21 W8X21 17 W21X62 W12X65

2 W14X74 W14X74 18 W8X24 W8X24

3 W8X24 W8X24 19 W8X21 W8X21
4 W10X60 W14X61 20 W8X40 W14X43

5 W8X24 W8Xx24 21 W8X24 W8X24

6 W8X21 wW8Xx21 22 W8Xx21 W8Xx21

7 W10X49 W10X49 23 W6X25 W8X24

8 W8X24 W8X24 24 W8X24 W8X24

9 W8X21 wW8Xx21 25 W8Xx21 W8Xx21

10 W8X48 W12X45 26 W12X22 W8X21

11 W8X24 W8X24 27 W8X24 W8X24

12 W8X67 W12X72 28 W8X21 W8X21
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13 W12X79 W12X79 29 W8X21 W8X21
14 W8X48 W10X49 30 W8X24 W8X24
15 W10X88 W12X79 31 W8X21 W8X24
16 W8X24 W8X24 32 W8X24 W8X21
EVPS SA-EVPS

Best weight (m?) 21.0761927 21.05647922

Worst weight (m®) 21.26676063 21.12315966

Average weight(m?®) 21.11430829 21.07340576

STD 0.039286787 0.014263105
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Figure 3. (a) The demand to capacity of stress ratios (DCR) of all elements of the 582-bar spatial
truss structure, and (b) The deformed shape (a hundredfold) of the 582-bar spatial truss structure
resulting from the SA-EVPS algorithm, in comparison to the original 582-bar spatial truss
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Figure 4. Convergence curves for the spatial 582-bar spatial truss of 30 independent runs for
EVPS and SA-EVPS. (a) graph in linear form, (b) graph in Solid form

4. CONCLUSION

There have been many optimization problems that have been solved successfully using the
EVPS algorithm, but this algorithm, as with many metaheuristic algorithms, includes
parameters such as « , p, w1, w2, HMCR, PAR, Neighbor and Memory_size that are directly
determined. As these parameters are very effective in determining the optimal answer for
some problems, the SA-EVPS algorithm automatically adjusts these parameters to improve
the quality of the answers. The 582-bar spatial truss structure, a well-known and large-scale
problem, was examined using both EVPS and SA-EVPS algorithms. Both algorithms were
presented, and the optimal design of the SA-EVPS algorithm was also graphically illustrated
for greater clarity. This study found that the SA-EVPS algorithm achieved better results than
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the EVPS algorithm in terms of best and worst designs, average and standard deviation
(STD), as well as convergence speed and solution quality. As a final recommendation, the
SA-EVPS algorithm may be used for other engineering problems as well
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