[ Downloaded from irist.iust.ac.ir on 2025-11-03 ]

[ DOI: 10.22068/ijoce.2024.14.2.583 ]

INTERNATIONAL JOURNAL OF OPTIMIZATION IN CIVIL ENGINEERING
Int. J. Optim. Civil Eng., 2024; 14(2):211-228

PREDICTION OF NATURAL FREQUENCIES FOR TRUSS
STRUCTURES WITH UNCERTAINTY USING THE SUPPORT
VECTOR MACHINE AND MONTE CARLO SIMULATION

Pooya Zakian'™ T and Pegah Zakian?
!Department of Civil Engineering, Faculty of Engineering, Arak University, Arak, lran
2Department of Electrical Engineering, Faculty of Engineering, University of Guilan, Rasht,
Iran

ABSTRACT

In this study, the support vector machine and Monte Carlo simulation are applied to predict
natural frequencies of truss structures with uncertainties. Material and geometrical properties
(e.g., elasticity modulus and cross-section area) of the structure are assumed to be random
variables. Thus, the effects of multiple random variables on natural frequencies are
investigated. Monte Carlo simulation is used for probabilistic eigenvalue analysis of the
structure. In order to reduce the computational cost of Monte Carlo simulation, a support
vector machine model is trained to predict the required natural frequencies of the structure
computed in the simulations. The provided examples demonstrate the computational
efficiency and accuracy of the proposed method compared to the direct Monte Carlo
simulation in the computation of the natural frequencies for trusses with random parameters.
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1. INTRODUCTION

Uncertainties are effective in the analysis and design procedures of a structural system, and
hence the use of a probabilistic approach is necessary. Therefore, various methods have been
developed for uncertainty quantification of structures [1-4]. One of the well-known methods
for probabilistic analysis is Monte Carlo simulation (MCS), known as a sampling method,
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which employs many realizations based on randomly generated sampling sets for uncertain
variables. The MCS has been used in various reliability analyses [5, 6]. However, although
the MCS is a robust method for probabilistic structural analysis, it needs a high
computational cost as each simulation corresponds to a time-consuming structural analysis.
To overcome this deficiency, a suitable sampling method or surrogate model (like a machine
learning-based model) can reduce the computational efforts. For example, the importance
sampling approach is utilized to reduce the total number of samples. In contrast, a machine
learning tool can be used as a surrogate model instead of the actual model.

Numerous applications of machine learning have emerged with increasing advances in
computer technology. Nowadays, machine learning methods are widely used in many
engineering fields, such as computational mechanics [7, 8], structural materials [9, 10],
structural optimization [11, 12], face recognition [13], spam detection [14], error-resilient
architectures [15, 16], and electric power systems [17]. Support vector machine (SVM) is a
machine learning tool applied to both classification and regression problems, which was first
identified by Vapnik et al. [18]. The applications related to structural mechanics mainly
include the following subjects: structural materials, earthquake engineering, wind
engineering, and structural health monitoring [9, 11, 19-21]. More recently, the MCS and
SVM were employed to calculate the failure probability of the structure [5].

Uncertainty representation of natural frequencies is crucial for studying the dynamic
characteristics of structural systems [22]. Stochastic methods have widely been developed to
consider uncertainties when sufficient statistical information is available. In these methods,
uncertainties are modeled as random variables, processes, or fields. Uncertainty
characterization is represented by the probability density function, mean value, variance, etc.
Nevertheless, if the information for the probability density function is unavailable, the
interval of upper and lower bounds of random variables can be employed to represent
uncertainty.

Natural frequencies of a structure with random parameters are often obtained by solving
the random eigenvalue problems. Scheidt and Purker [23] investigated the random
eigenvalue problems. Various approaches [22, 24] were employed to solve these problems,
such as direct MCS method [24], and perturbation method [22]. Hollot and Bartlett [25]
carried out an study on eigenvalues of interval matrices. Chen et al. [26] presented the
perturbation methods for calculating the bounds of eigenvalues of vibration systems with
interval parameters. Qiu et al. [27] computed the eigenvalue bounds of structures with
uncertain-but-bounded parameters using vertex theorem. Gao [28] presented the interval
factor technique for interval analysis of natural frequency and mode shape of structures with
interval parameters. Modares et al. [29] proposed an element-by-element formulation to
consider interval eigenvalue problem. Angeli et al. [30] studied the natural frequency
intervals for the systems having polytopic uncertainty. Many studies on stochastic problems
were carried out to determine dynamic characteristics of structures considering an uncertain
model. However, in real-world problems, usually a large number of variables and design
parameters exist in a structural system. Since some may have sufficient statistical
information, stochastic and interval models are needed simultaneously. In this regard,
various attempts have been made on solving the mixed stochastic problems in either static
[31, 32] or dynamic [33] case.

In this study, the MCS is utilized for calculating the natural frequencies of truss structures
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with uncertainties. Also, various random variables are considered in the MCS to calculate
probabilistic eigenvalue analysis of the structure. To accelerate the MCS, the SVM is
employed to predict the natural frequencies of the structure such that each simulation in the
MCS can be performed faster. The computational efficiency and accuracy of the proposed
method are compared to those of the direct MCS using three examples.

The remainder of this article is presented as follows. Section 2 focuses on the research
background of the SVM. In Section 3, a review of eigenvalue analysis for determining the
natural frequencies of truss structures is given, and then the proposed probabilistic approach
is discussed. Section 4 provides the illustrative examples. Finally, the conclusions are
summarized in Section 5.

2. SUPPORT VECTOR MACHINE

The SVM was invented in the early 1960s, and became popular in the 1990s [18, 34].
The SVM is a machine learning tool for regression analysis and data classification [8, 9]. To
classify data into groups of samples, the SVM finds a hyperplane (decision boundary) in a k-
dimensional space when considering k features. Clearly, a two-dimensional space can be
separated by a line, but a higher-dimensional space can be separated by a hyperplane. Such a
plane has maximum distance to the groups of samples. As shown in Figure 1, the points in
close proximity to the hyperplane are referred to as support vectors, which can be
dramatically effective in the position and orientation of the hyperplane. The SVM utilizes a
particular form of mathematical functions defined as kernels transforming inputs into the
required form. Since the SVM relies on kernel function, it is a nonparametric technique. The
kernel function can be in linear or nonlinear form. An optimization problem is defined to
find the optimal hyperplane, which can be solved by optimization techniques. Lagrange
multipliers are utilized to get this problem into a form that can be solved analytically.
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Figure 1. Schematic of a two-class SVM

In this study, the SVM implemented in MATLAB for regression analysis is utilized,
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which is the linear epsilon-insensitive SVM regression. In e-SVM regression, the set of
training data consists of a multivariate set of N observations (x») and observed response
values (yn). As mentioned before, the goal is to find a function f(x) deviating from y, by a
value no greater than ¢ for each training point x, and at the same time is as flat as possible.

In the primal formula of linear SVM regression, the following function is sought
f (X)=w'x+b @

such that it is as flat as possible. In order to find f(x) with the minimal norm value, the
following convex optimization problem is minimized

J(w)= %WTW )
with all residuals limited to an upper bound e&:

vn:

Y, —(W'x+b)|<e (3)

There is a possibility of finding no function like f(x) to satisfy these constraints for all
points. This issue is resolved by introducing slack variables &, and & for each point. These

slack variables allow regression error values up to & and &, while satisfying the required

conditions. Such a technique is similar to the concept of soft margin in the SVM
classification.

The primal formula is determined by adding the slack variables to Eq. (2), resulting in the
following objective function:

I) = WWC (6 +6) @

with

vn:y, —(W'x+b)<e+¢&
vn:(w'x+b)-y <e+&
vn:é, >0
vn:& >0

®)

where C is a positive numerical value controlling the penalty applied to observations that fall
outside the epsilon margin (¢), and leads to avoid overfitting (regularization). This value
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provides a trade-off between the flatness of f(x) and the amount up to which deviations
greater than ¢ are tolerated.

The loss function is linear ¢-insensitive and ignores errors when the distance between the
predicted values and observed values is less than ¢. The loss function is expressed in terms
of the distance between the ¢ boundary and observed value y, that is

ng{o ifly —f (&)|<e ©)

ly —f (£)]—¢ Otherwise

Lagrange dual formulation of the optimization problem defined in Eg. (4) is
computationally more efficient to be solved. The solution of the dual problem gives a lower
bound to the solution of the primal problem. The optimal values of the primal and dual
problems are not necessarily equal, and the difference is known as duality gap. Nevertheless,
the value of the optimal solution to the primal problem is provided by the solution of the
dual problem when the problem is convex and satisfies a constraint qualification condition.

In order to determine the dual formula, the Lagrangian from of the primal function is

constructed by defining nonnegative multipliers «, and «;, for each observation x,. Hence,
one can minimize

L@ =333 (@ -a)la, -a)XIx, +3 (@ +a)+ Yy, (@ -a) @

i-lj=1

subjected to the following constraints

N *

Z(an _an):O

n=1

vn:0<ea, <C ®)
vn:0<a, <C

The parameter w can be completely expressed as a linear combination of the training
observations, as given by

N
w=> (o —ay)x, ©)
n=1
The following function relies on the support vectors and predicts new values:
N *
f ()= (a, —a X x+b (10)
n=1

To find optimal solutions, the Karush-Kuhn-Tucker (KKT) conditions for linear SVM
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regression are used as the optimization constraints defined by

vnia,(e+& -y, +W'x, +b)=0
vn:ia, (e+& +y, —W'x, —b)=0
vn: & (C-a,)=0
Yn: & (C —a’)=0

(11)

which imply that all observations exactly inside the epsilon tube have Lagrange
multipliers o, and o, being equal to zero. When either o, or o is not zero, the
corresponding observation is referred to as a support vector.

To establish a nonlinear SVM regression model, the product x;x; is replaced by kernel

function G(x;,x;) because x/x;is also known as a linear kernel function. A nonlinear

kernel function can usually be expressed in Gaussian or polynomial form. However, the
linear SVM model is employed in this paper.

Since the aforementioned minimization problem can be in standard quadratic
programming form, it is solved by common programming approaches which can be
computationally expensive. Using a decomposition method can accelerate the computation
and prevent running out of memory. However, the sequential minimal optimization is the
most popular technique for solving the SVM problems because the Lagrange multipliers
used in this technique are solved analytically [35]. Each solver needs a convergence
criterion, and there are several convergence criteria for the solvers used for the SVM, such
as feasibility gap, gradient difference, and largest KKT violation.

3. PROBABILISTIC EIGENVALUE ANALYSIS

Here, the analysis of vibration frequencies for truss structures is reviewed. Then, the
probabilistic analysis using the MCS and SVM is discussed.

3.1. Vibration frequencies of truss structures

In order to compute the natural frequencies of a structure, an eigenproblem should be solved
by incorporating the stiffness and mass matrices of the structure [36, 37]. The stiffness
matrix of a three-dimensional truss element is presented as follows:

sz c.C, C.C, —CX2 -C,C, -C.C,
2
c? cc,  <c, -} c,C,
2 2
oA e oo ee el |
L c? c,C, c.c,
c? c,C,
Symmetric C;
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where

i (13)

where k° represents the stiffness matrix of a truss element formed by connecting the nodes i
and j; also, L, A and E are the element length, cross-section area, and elasticity modulus,
respectively; xi,yi and zi denote the Cartesian coordinates of the ith node.

Also, the consistent mass matrix of a three-dimensional truss element is expressed by

200100

020010

. pAL|0 0 2 0 0 1
me == 14
6 |1 00200 (14)

010020

00100 2]

in which p is the density. For briefness, the mass and stiffness matrices of the two-
dimensional truss element are not mentioned here.

The following eigenproblem can be established by assembling all mass and stiffness
elements:

Kg =afMg, (15)

where M and K show the mass and stiffness matrices of the truss structure. Also, @, and ¢,
are the kth circular frequency and mode shape vector.

3.2. Probabilistic eigenvalue analysis using the MCS-SVM

The MCS is a kind of computational algorithm that employs repeated random sampling for
estimating the possible outcomes of an uncertain event to obtain the statistical measures for
a range of results. In other words, the MCS builds a model of possible outcomes by
leveraging a probability distribution for any variable having inherent uncertainty. Then, it
recalculates the results repeatedly, each time using a different set of random numbers. The
MCS involves three fundamental steps:

(i) The predictive model is built by identifying both the independent variables (the input
or predictor variables) and the dependent variable to be predicted.

(if) Probability distributions of the independent variables are specified. In this regard,
historical data and/or the analyst’s subjective judgment may be used. Then, the random
values of the independent variables are generated using the probability distributions.

(iii) The simulations are repeatedly performed considering the predefined number of


http://dx.doi.org/10.22068/ijoce.2024.14.2.583
https://irist.iust.ac.ir/ijoce/article-1-583-en.html

[ Downloaded from irist.iust.ac.ir on 2025-11-03 ]

[ DOI: 10.22068/ijoce.2024.14.2.583 ]

218 Pooya Zakian and Pegah Zakian

samples, such that each of which corresponds to a realization of the random variable(s)
followed by the evaluation of the independent variables. For example, a deterministic
eigenvalue problem is solved for each realization. Finally, the procedure is terminated upon
reaching the desired accuracy of the response statistics (e.g., mean and standard deviation
values).

Although the MCS is a simple and robust method for implementing the response
variability calculation in the framework of stochastic structural mechanics, the estimation
accuracy of the MCS depends on the number of samples. For example, the standard
deviation estimate is inversely proportional to the square root of the number of samples [38].
Therefore, the solution of many deterministic problems corresponding to many samples
needs a remarkable computational cost, particularly for a large-scale system with
considerable stochastic dimension.

In this study, a surrogate model is formed by the SVM regression, instead of the
eigenvalue analysis requiring a structural model, to speed up the MCS. The MCS-SVM s
carried out according to the following steps:

Step 1: a data set of observations containing the input random variables (features) and the
resulting natural frequencies (response values) is created. The nth training point corresponds
to X, and y, taken as some random structural parameters and natural frequency of the
structure, respectively.

Step 2: the SVM regression model is trained using the created data set.

Step 3: the MCS is utilized for the solution of probabilistic eigenvalue analysis but no
matrix structural analysis for the eigenvalue analysis is performed in each simulation.
Instead, each simulation uses the trained SVM model to predict the natural frequencies of
the structure, thereby reducing the computational cost.

4. ILLUSTRATIVE EXAMPLES

Here, three examples are provided to demonstrate the efficiency of the proposed MCS-
SVM method. Both MCS and MCS-SVM methods are employed for the examples to
compare their solution accuracy and computational cost. Obviously, the MCS uses an
eigenvalue analysis for each simulation, but the MCS-SVM uses the SVM for each
simulation instead. The total number of Monte Carlo simulations is selected as 20,000. For
the SVM, the generated data with a size of N=1000 are randomly split into two sets: the
training set consists of 90 percent of data, and the testing set includes 10 percent of data.
These 1000 data points are obtained using eigenvalue analyses of the structure
corresponding to various realizations of random variables. In order to consider more variety
of data, here the defined standard deviation of every normal random variable is multiplied
by 2 when generating the data set, while that of every uniform random variable is multiplied
by 1.5.

For each testing set, the mean square error is calculated by

1 )
MSE :HZ(y,— -y;) (16)
j=1
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where y; and y; are the observed (true) and predicted output values corresponding to the jth

data point; n is the number of data points utilized for testing. All the analyses are performed
using a laptop with the Intel Core i7-7700HQ CPU @ 2.80 GHz.

4.1. An 8-bar planar truss

The first example is an 8-bar truss made of aluminum, as illustrated in Figure 2 where the
nodal and member numberings of the truss are also shown. This problem was previously
solved in Ref. [39]. The mean values of the elasticity modulus, mass density and cross-
sectional area are 7.1008x10* MPa, 2.8497x10° kg/m?, and 4.8x10™* m?, respectively. In
order to investigate the effects of uncertainties, different coefficients of variation are defined
for uniformly distributed random variables including cross-sectional area, member length,
density, and elasticity modulus. The coefficients of variations for cross-sectional areas and
member lengths of all the elements are taken as 0.1. The same value is also taken for the
coefficients of variations of elasticity modulus and density of elements 1 to 6, but those of
elasticity modulus and density of elements 7 and 8 are selected as 0.13.

Considering the input random variables used, the data set of the SVM model is created
within 1.3925 s using 6 features for each data point. The number of random variables used
for elasticity modulus, mass density, cross-sectional area, and member length are 2, 2, 1, and
1, respectively. The observed and predicted values of the fundamental frequency are
illustrated in Figure 3. Mean values of the fundamental frequency obtained with the MCS
and MCS-SVM are 76.6377 Hz and 77.7309 Hz, respectively. Also, the standard deviation
values of the fundamental frequency obtained with the MCS and MCS-SVM are 9.3411 Hz
and 9.3029 Hz, respectively. The computational times of MCS and MCS-SVM are equal to
15.1566 s and 0.8995 s, respectively. It should be noted that the computational time of the
MCS-SVM reported in this study includes the training time of the SVM model and the
analysis time of the MCS. The results show that the MCS-SVM performs faster than the
MCS, providing appropriate accuracy. Based on Eq. (16), the mean square error equals
3.9205. Since the standard deviation used for creating the data set is larger than that of the
samples used for the MCS-SVM to increase the variety of data, the error is not very small.

(1) 8 @ _
5 6 7 g
3)—2 @ 1
1 2 3 E
5) © 1
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Figure 2. An 8-bar planar truss.

Observed frequencies (Hz)

50 ¢ ‘ . ‘ ‘ . ‘
50 60 70 80 90 100 110

Predicted frequencies (Hz)

Figure 3. The observed and predicted values of the fundamental frequency for the 8-bar truss.

4.2. A 72-bar space truss

A T72-bar space truss is shown in Figure 4 representing the nodal and member
numberings. The mean value of elastic modulus is selected as 6.98x10* MPa, while the
density is taken as 2770 kg/m®. A lumped mass of 2270 kg is also placed on to the top nodes
of truss. The cross-sectional areas of members are classified into 16 groups: (1) Ai—As, (2)
As—A12, (3) A13—Ase, (4) A—Ass, (5) A1o—A2, (6) Axz—Aso, (7) Az1—Ass, (8) Ass—Ass, (9) Azr—
Aso, (10) As1—Ass, (11) Ass—-As2, (12) Asz—Asa, (13) Ass—Ass, (14) Ase—Ass, (15) As—Azo, (16)
A71—A72. The mean cross-sectional area for each group is equally selected as 10° m2. The
coefficients of variations for elasticity modulus and cross-sectional areas of all members are
assumed to be 0.04 and 0.05. The elasticity modulus and cross-sectional area are random
variables with normal distribution, respectively. The same random elasticity modulus is
assigned to all members, but the random cross-sectional area for all members of each group
is identical. However, the other structural parameters are assumed to be deterministic.
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Figure 4. A 72-bar truss; lateral view, top view, and a typical story of the structure are shown.

Since three natural frequencies are selected as outputs, three SVM models are
constructed. The data set of the SVM models is created within 6.9435 s using 17 features
for each data point. The number of random variables for the cross-sectional area and
elasticity modulus are 16 and 1, respectively. The observed and predicted values of the
natural frequencies of the first three vibration modes are shown in Figure 5. Since
frequencies of the first and second modes are close together, Figures 5a are 5b are very
similar. Mean and standard deviation values of the natural frequencies obtained with the
MCS and MCS-SVM are reported in Table 1 which also lists the computational times of
MCS and MCS-SVM. As observed in Table 1, the MCS-SVM outperforms the MCS when
comparing the elapsed times, while giving a desirable solution accuracy. Furthermore, the
mean square errors of three SVM models are reported in Table 2.
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Figure 5. The observed and predicted values of natural frequencies for initial vibration modes of
the 72-bar truss: (a) the first mode, (b) the second mode, and (c) the third mode.

Table 1. Mean and standard deviation values of the natural frequencies of the 72-bar truss
obtained with the MCS and MCS-SVM.

Natural frequency MCS MCS-SVM
(Hz) Mean Standard deviation Mean Standard deviation
f1 3.8775 0.0892 3.8589 0.0887
f2 3.8775 0.0892 3.8589 0.0887
f3 6.6987 0.1582 6.6673 0.1580
Elapsed time (s) 120.3169 10.6980
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Table 2. The mean square errors for the SVM models corresponding to different natural
frequencies of the 72-bar truss.

MSE
fi f Lic
0.000138 0.000138 0.000692

4.3. A 600-bar truss dome

A single-layer truss dome described in [40] is illustrated in Figure 6. The span length of the
dome is equal to 28 m, while its height is 7.5 m. This truss structure has 216 nodes and 600
members generated by cyclic replicating a substructure with 9 nodes and 25 members. The
angle between every two subsequent substructures is 15 degrees, resulting in 24 similar
substructures. The mean value of cross-sectional area, elasticity modules and density for all
members are 2x103 m?, 2x10° MPa and 7850 kg/m?3, respectively. All the ground-level
nodes are simply supported. Mass density, elasticity modulus, and cross-sectional area are
random variables with normal distribution and coefficient of variations 0.1, 0.1, and 0.16,
respectively. These random variables are identical for all members.

Figure 6. A 600-bar truss dome.

Here six natural frequencies are needed, and hence six SVM models are constructed. The
data set is created within 68.9940 s, for which 3 features comprising cross-sectional area,
elasticity modulus and mass density are considered for each data point. The observed and
predicted values of the first six natural frequencies are indicated in Figure 7. Mean and
standard deviation values of the natural frequencies computed with the MCS and MCS-
SVM are listed in Table 3 which also reports the computational times. According to the
results, the MCS-SVM is much faster than the MCS. Also, mean and standard deviation
values obtained with the MCS-SVM are very close to those obtained with the MCS. The
mean square errors given in Table 4 are relatively small, but the errors become larger for
predicting frequencies of higher modes. The reason can be the requirement for more data
points to reach a better accuracy.
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Figure 7. The observed and predicted values of natural frequencies for initial vibration modes of
the 600-bar truss dome: (a) the first mode, (b) the second mode, (c) the third mode, (d) the fourth
mode, (e) the fifth mode, and (f) the sixth mode.

Table 3. Mean and standard deviation values of the natural frequencies of the 600-bar truss dome
obtained with the MCS and MCS-SVM.

Natural frequency MCS MCS-SVM
(Hz) Mean Standard deviation Mean Standard deviation
f1 12.5628 0.8993 12.6574 0.9058
f 12.5628 0.8993 12.6574 0.9058
fa 13.5502 0.9700 13.6523 0.9783
fa 13.5502 0.9700 13.6523 0.9783
fs 16.1168 1.1538 16.2401 1.1664
fe 16.1168 1.1538 16.2375 1.1653
Elapsed time (s) 1.3332x10° 2.0777

Table 4. The mean square errors for the SVM models corresponding to different natural
frequencies of the 600-bar truss dome.

MSE

f1 fz f3 f4 f5 fﬁ

0.162215 0.162215 0.189055 0.189055 0.267757 0.267541

5. CONCLUSIONS

In this paper, the MCS with SVM s utilized to predict the natural frequencies of truss
structures with uncertain parameters. These uncertain parameters include elasticity modulus,
mass density, cross-sectional area, and, or member length of the structure, which are
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assumed to be random variables with uniform or normal distribution. The resulting random
eigenvalue problem is solved with the MCS to calculate the natural frequencies of the
structure with random parameters. However, due to the high computational cost of the MCS
when performing eigenvalue analyses, here the proposed SVM model predicts the required
eigenvalues for each simulation in the MCS. Therefore, an SVM-based surrogate model is
trained with fewer data points than the samples (simulations) used in the MCS to predict the
natural frequencies efficiently. Three trusses, from small- to large-scale size, with different
random parameters are employed as numerical examples to demonstrate the capabilities of
the proposed MCS-SVM in comparison with the MCS. Results indicate that the MCS-SVM
is faster than the MCS, providing a suitable solution accuracy. Furthermore, the
computational cost of the MCS-SVM is much less than the MCS when considering a large-
scale structure. Nevertheless, the results demonstrate that increasing the number of features
is more effective than increasing the size of the structure in reducing the computational
efficiency of MCS-SVM. The reason is that the number of features is an essential factor
influencing the complexity of an SVM regression model. Obviously, the MCS-SVM method
is not limited to the probabilistic analysis of trusses and can also be applied to other skeletal
structures such as frames.
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