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ABSTRACT

Spillway design poses a significant challenge in effectively managing the energy within water
flow to prevent erosion and destabilization of dam structures. Traditional approaches typically
advocate for standard hydraulic jump stilling basins or other energy dissipators at spillway
bases yet constructing such basins can be prohibitively large and costly, particularly when
extensive excavation is necessary. Consequently, growing interest in cascade hydraulic
structures has emerged over recent decades as an alternative for energy dissipation. These
structures utilize a series of arranged steps to facilitate water flow, effectively dissipating
energy as it traverses the cascade. Commonly deployed in scenarios involving high dams or
steep gradients, the stepped configuration ensures efficient aeration and substantial energy
dissipation along the structure, thereby reducing the size and cost of required stilling basins.
Despite extensive research on hydraulic characteristics using physical and numerical models
and established design procedures, construction cost optimization of step cascades remains
limited but promising. This paper aims to address this gap by employing two novel gradient-
based meta-heuristic optimization techniques to enhance the efficiency and cost-effectiveness
of cascade stilling basin designs. Through comparative analyses and evaluations, this study
demonstrates the efficacy of these techniques and offers insights for future research and
applications in hydraulic structures design optimization.
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1. INTRODUCTION

The dam structure comprises various integral components, including the reservoir, body,
spillway, energy dissipation system, tunnel, and power plant. An essential component within
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this structure is the energy dissipation system, necessary to mitigate the effects of hydraulic
forces. As water flows from the reservoir to the downstream, the conversion of static head to
kinetic energy occurs, potentially resulting in high velocities and significant pressures.
Without proper dissipation, these forces can pose a threat to downstream structures.
Commonly employed energy dissipation systems include stilling basins, roller buckets, and
sill block aprons [1-4].

In the case of high-head dams, traditional combinations of spillways, such as siphon
spillways, lateral spillways, and ogee spillways, may prove impractical due to insufficient
tailwater depth or unsuitable site conditions [3-5]. These conventional designs, coupled with
energy dissipation systems, often necessitate large dimensions. To mitigate this issue, cascade
stilling basins offer a viable alternative. A cascade stilling basin comprises a series of
successive free-fall spillways, each followed by a stilling basin. This arrangement effectively
reduces flow velocity and Froude number, eliminating the risks associated with cavitation,
abrasion, and vibration [1]. Moreover, by minimizing dimensions, cascade stilling basins also
contribute to cost savings in spillway construction [2].

In hydraulic engineering, cascades often replace smooth chutes and are used in structures
such as flood relief systems or sewage channels. According to Chanson [6], two distinct flow
states must be distinguished in cascades — nappe flow and skimming flow. In nappe flow,
energy conversion occurs with or without a complete hydraulic jump. In skimming flow, the
water shoots over the steps, forming standing waves that extract some energy from the main
flow. The type of flow is determined by the slope of the cascade, defined by the ratio of step
height to step depth. Typically, flatter cascades exhibit nappe flow, while steeper ones show
skimming flow. The step cascades allow water to plunge from step to step at low flows,
dissipating much of its energy. At higher flows, the water skims over the steps, creating
turbulent eddies in the step pockets. These eddies reduce flow velocity, thus decreasing the
required size of the stilling basin for the hydraulic jump. Additionally, the turbulent eddies
trap air, causing the flow to become highly aerated and increasing its bulk depth, further
reducing the average flow velocity.

Optimizing the design of cascade stilling basins is essential to ensure the efficiency and
cost-effectiveness of the dam structure. In recent decades, numerous optimization methods
have been developed to solve engineering design problems, ranging from classical Linear
Programming (LP) and Non-Linear Programming (NLP) to more advanced techniques like
Dynamic Programming (DP) and meta-heuristic algorithms (see, e.g., [7-13]). Among these
approaches, meta-heuristic algorithms [14] offer several significant advantages over
traditional optimization techniques.

Firstly, meta-heuristic algorithms are highly flexible and can be easily adapted to a wide
range of optimization problems without requiring specific mathematical formulations. This
flexibility allows them to effectively handle complex, non-linear, and multi-modal problems
that often arise in the design of hydraulic structures. Traditional methods like LP and NLP
may struggle with such complexities due to their reliance on gradient information and other
specific problem structures. Secondly, meta-heuristic algorithms can escape local optima,
which is a common limitation of many classical optimization techniques. These methods often
employ stochastic search strategies and population-based approaches that enhance their ability
to explore the global search space thoroughly. This characteristic is particularly beneficial in
optimizing the design of cascade stilling basins, where the solution landscape can be highly
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irregular and fraught with multiple local optima.

Additionally, meta-heuristic algorithms often require fewer assumptions about the problem
domain, making them more robust and versatile in practical applications. They can incorporate
a variety of constraints and objective functions, which is essential for balancing the multiple
performance and cost criteria involved in dam construction projects. This robustness contrasts
with traditional methods that might need extensive modifications to accommodate different
constraints and objectives. Furthermore, the iterative nature of meta-heuristic algorithms
allows for continuous improvement and refinement of solutions. This iterative process is
advantageous for complex engineering problems where initial solutions can be progressively
enhanced through successive iterations.

In this paper, meta-heuristic algorithms are employed to optimize the design of cascade
stilling basins. The effectiveness of two new meta-heuristics inspired by the gradient-based
Newton’s method is explored. Gradient-based meta-heuristics integrate gradient and
population-based techniques to determine the search direction, with Newton's method guiding
the exploration of the search space. Unlike gradient methods and conventional optimization
approaches, which typically adhere to a predetermined search direction towards the optimal
solution, these algorithms adjust their search direction as they navigate the search space. In
this study, the Gradient-based Optimizer (GBO), a novel population-based metaheuristic, is
utilized, which has demonstrated its efficacy in solving various engineering problems [15],
image processing [16], and task scheduling [17]. Previous studies have shown that GBO
outperforms many other meta-heuristic methods in terms of solution quality and convergence
[15-17]. Additionally, an improved version of GBO called the dynamic Fitness-Distance
Balance (dFDB) algorithm is applied [18]. By leveraging the strengths of GBO and
incorporating the dynamic fitness-distance balancing technique, the dFDB offers a promising
avenue for solving optimization problems [19]. Through the application of these meta-
heuristic algorithms, this paper aims to achieve an optimized design for cascade stilling basins
while balancing hydraulic performance requirements with cost considerations.

2. LITERATURE REVIEW

In contrast to the belief that cascades for energy dissipation are a modern innovation
introduced with new construction methods such as RCC and gabions, these channels have
been used since ancient times. Historically, stepped channels were designed to enhance the
stability of structures like overflow weirs and to dissipate flow energy. This technique was
independently developed by several ancient civilizations. In fact, around 16 dams featuring
stepped spillways were constructed in antiquity. These dams varied in height from 1.4 m to
50 m, in width from 3.7 m to 150 m, and handled maximum discharges of up to about 9000
m3/sec. The steps on these spillways ranged from 0.6 m to 5 m in height, with the number of
steps varying between 2 and 14 [20].

The benefits of cascade structures lie in their gradual reduction of water kinetic energy,
leading to heat transformation, thereby allowing for a reduction in the size of the stilling basin.
These structures are particularly suited for dam spillways or combined sewer systems,
ensuring the safe discharge of water over significant drops. Stepped chutes are frequently
integrated into dam spillways and are also utilized in park settings, enhancing natural
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landscapes. In a cascade stilling basin, each step corresponds to an isolated stilling basin for
hydraulic jump. Water descends from level to level on stepped chutes, with optimal dissipation
expected when a hydraulic jump occurs. For steeper stepped chutes and high discharge rates,
skimming flow may occur, where the step acts as a roughness element, promoting vigorous
mixing of water with air [21].

The impact of step geometry, number of steps, and relative energy loss has been
extensively presented and discussed in several studies. Experiments on physical models
conducted over the past decades have provided deeper insights into flow characteristics and
energy dissipation performance. For instance, Thorwarth [22] investigated flow instabilities
on pooled stepped chutes with gentle slopes of 8.9° and 14.6°, which could pose safety risks
for dams. Chinnarasri and Wongwises [23] observed that energy dissipation was
comparatively lower on flat stepped chutes than on steps with end sills for a 45° chute slope.
Barani et al. [24] studied energy dissipation on a stepped spillway model with a 41.41° slope
and 21 steps, finding that pooled stepped spillways dissipated more energy than flat stepped
spillways.

Finding the optimal combination of dimensions and configurations for cascade stilling
basins remains a challenging topic. Optimization of these structures falls into two main
categories. The first category focuses on maximizing hydraulic performance through
experimental investigations and hydraulic simulations. For instance, Tabari and Tavakoli [25]
explored the relationship between energy reduction, the number of steps, step heights, and
flow discharge. Frizell et al. [26] demonstrated how the energy dissipation system and the
incline of steps affect the probability of cavitation. Roushangar et al. [27] simulated the energy
dissipation of these systems using empirical data, while Shahheydari et al. [28] studied the
correlation between flow coefficientand energy dissipation. Mero and Mitchell [29] compared
the effectiveness of horizontal steps versus inclined or flat curved steps in dissipating energy.
Additionally, Aal et al. [30] examined the impact of over-flow, through-flow, and under-flow
breakers on energy dissipation, and Afshoon et al. [31] investigated the influence of step
roughness.

The second category concentrates on optimizing the design of cascade stilling basins, with
a particular focus on minimizing construction costs. There has been limited research in this
area. For the first time, Vittal and Porey [32] (hereafter referred to as VP) introduced a
systematic method for designing cascade stilling basins primarily focused on meeting
hydraulic criteria. The VP method examines only a restricted set of alternatives before
selecting the most favorable one. It determines the number and height of falls, along with the
length of stilling basins, and then optimizes graphically with the objective of minimizing
excavation volumes. The review of existing studies in this category indicates that various
methods have been employed to enhance design efficiency. In all these studies, including the
present one, the height of each fall and the length of the stilling basin beneath it are considered
as decision variables. One of the first attempts to minimize the cost of cascade stilling basins
was made by Bakhtyar et al. [1] using the Dynamic Programming (DP) method. Their results
indicated a cost reduction of 34.4% and 31% compared to the traditional VP method for four
cascades, both with and without considering concrete works, respectively. Afshar and
Daraeikhah [5] later applied the Continuous Ant Algorithm (CAA), achieving improvements
of approximately 18% and 16% for three and four steps, respectively. Daraeikhah et al. [33]
tackled the problem using the Particle Swarm Optimization (PSO) algorithm, which
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outperformed the VP results. Jazayeri and Moeini [3] explored four meta-heuristic algorithms,
namely Aurtificial Bee Colony (ABC), PSO, and their improved versions (IABC and IPSO),
and compared the outcomes with the VP method and Genetic Algorithm (GA). They
concluded that VP failed to find the optimal solution, with IABC and IPSO showing better
performance than GA for both three- and four-step cases. Finally, Jazayeri and Moeini [4]
employed four different meta-heuristic algorithms: GA, Gravitational Search Algorithm
(GSA), PSO, and ABC. The GA results surpassed those of VP, while the other three methods
marginally outperformed GA for both three- and four-stepped cascades. PSO yielded the best
results, reducing costs by 17.7% and 16.45% for three and four cascades, respectively.

Overall, the review of the literature highlights the extensive research conducted on the
hydraulic performance of cascade stilling basins. These studies have primarily explored
various aspects such as the impact of step geometry, number of steps, flow characteristics, and
energy dissipation efficiencies. However, in terms of cost optimization, there is a noticeable
lack of literature utilizing diverse methodologies to reduce the construction costs associated
with cascade stilling basins. Despite the existing advancements, there remains a need for
continued exploration of innovative optimization techniques to enhance the design efficiency
and cost-effectiveness of cascade stilling basins. This paper addresses this gap by applying
two new meta-heuristic algorithms for the optimum cost design of step cascades, thereby
contributing to the ongoing development of more effective and economical cascade stilling
basins.

3. THE UTILIZED OPTIMIZATION METHODS

3.1. Gradient-based Optimizer

The first method employed to optimize the design is the Gradient-based Optimizer (GBO), a
novel meta-heuristic optimization algorithm [34]. Inspired by the gradient-based Newton's
method, GBO utilizes two main operators. The first operator, the Gradient Search Rule (GSR),
accelerates the convergence rate, while the second operator, the Local Escaping Operator
(LEO), helps escape local optima. Together, these operators, along with a set of vectors,
effectively explore the search space.

First, three parameters called pr (probability), M (total number of iterations) and & (small
number in range of [0,0.1]) must be assigned. The algorithm needs initialization, so an initial
population Xo = [Xo,1, Xo,2, ..., Xo,0] IS generated, in which D is the number of variables. Then,
the objective function value f(Xo) must be evaluated for each member of population and the
best and worst solutions will be specified.

In each iteration (m), the next position of each member of population (n) is a vector and
can be calculated using equation (1).

X = (X1 + (1 — 1) X270 + (1 — 1) X3! (1)

where X1, X2 and X3 are vectors and can be calculated using equations (2-4); ra and ry
are random numbers selected from [0,1].
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X1 = x* — (randn) 28x(xn ) + (rand)py (Xpese — X0") (2)
n n P1 yprrln _ yq:{l +¢ P2(Xpest n

X2 = Xpesr — (randn) 28x(xn) + (rand)p, (x7 — x7%) 3)
n best P1 yprrln _ yq;ln +e P2(Xr1 T2

X300 = xy' — p (X235 — X13) (4)

where randn is a normally distributed random number; rand is a random number in [0,1]; p1
and p» are defined by equation (5); Xeest is the best solution obtained during the optimization
process; and x;* is the current vector.

p; = (x.rand)a — a,p, = (2.rand)a — a (5)

These parameters depend on « and . Both can be obtained from equations (6) and (7),
respectively.

a = |psin (%n +sin (/3 37"))| (6)

m
B = Bmin + (Bmax — Bmin) (1 — (M)3)2 (7)

where fmin and Smax are set to 0.2 and 1.2, respectively. Ax, which is the other parameter used
in equations (2) and (3) is defined as follows

Ax = rand(1: N)|step| (8)
where rand(1:N) is a random number with N dimensions and step is calculated using equation

9).

(xbest - xm) +4

t = 9
step > ©
o is another parameter which can be calculated by equation (10).
X+ x4 x5+ x
§ = 2rand |-——2 T3 T4 ym (10)

4 n

where r1, Iz, r3 and r4 are different random integers from [1,N] and not equal to n, and N is the
population size. The last parameters in equations (2) and (3) are yp;* and yq,, defined by
equations (11) and (12).

m m
Zn+1 + Xn

ypmt = (rand)(T + (Ax) (rand)) (11)
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m

yar = rand) () rand)) (12)

Note that zJ% ; is calculated using the following equation where xworst iS the worst solution
obtained during the optimization process.

2Ax)x™
Znhq = x5t — randn (2A0)xn (13)
Xworst — Xpest +¢€

Also, the LEO produces a new position if a random number is less than pr. This new
position is calculated from equation (14) if a random number from [0,1] is less than 0.5.
Otherwise, it is calculated from equation (15).

Xt = X[ho = X + fi (W Xpese — upxi") + fop1 (us (X277 — X171 + u, (7% — x73))/2 (14)
X = XTko = Xpest + f1 (Wi Xpese — UpXi0) + fop1 (us (X2 — X171 + u, (7% — x73))/2  (15)
where fy is a uniform random number in the range of [-1,1]; f2 is a random number from a

normal distribution with mean of 0 and standard deviation of 1; and ui, u2 and uz can be
obtained from equations (16) to (18), respectively.

uy = 2Lyrand + (1 —Ly) (16)
u, = Lyrand + (1 — L,) a7
us; = Lyrand + (1 — L,) (18)

where x;* is presented by the following equation
x’r(n = szlr)n + (1 = Ly)Xrana (19)

where L is a binary parameter depending on . If w1 is less than 0.5, Ly is 1, otherwise, it is
0. Lo is similar to Ly but depending on u». 11 and u» are random numbers in the range of [0,1].
x," is a randomly selected solution of the population and Xrand is @ new solution. Then, the
positions x5, and x;,,.s; Will be updated. This loop will continue until the last iteration
(m=M) and the best position (x;; ) will be the outcome of the method.

3.2. Dynamic Fitness-distance Balance

The second method, dynamic Fitness-distance Balance (dFDB) is based on GBO method. The
GBO has a premature convergence problem. Therefore, its guide selection process in LEO
must be redesigned to improve overall search performance using dFDB method [18]. There
are three cases of this method presented by [18], but only the second case is used in this paper.
In this case, 20% of the search process lifecycle uses LEO equations from GBO. The other
80% of this process is as follows.
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If a random number is less than 0.5, x;, is calculated from equation (20); otherwise, it is
calculated from equation (21).

XIko = Xi 4+ fi(Wy Xpese — U xit) + fopr (uz (X270 — X171) + uz(xdfdb - x}’%))/Z (20)
Xiko = Xagap t fi(UiXpese — Upxy") + fop1 (Us (X27 — X1T) + up (7] — 73)) /2 (21)
To calculate Xgran, first, a vector of normalized distance values of the vectors from best

answer (normDP) is calculated for each of the existing answer vectors using equation (22).
In this equation, k is the dimension of each vector, which is the number of variables.

DPx :\/(le_Pl}est)z+"'+(ka_Pbliast)2 (22)

Then, the normal fitness values of the answer vectors (normFy) is calculated. A weighting
coefficient, called wqrpg is calculated by equation (23).

— — 23
Warpp = T (1-1W)+1b (23)

where Ib is the minimum value of wgrps and maxFEs is the maximum number of evaluations
of the objective function. The score of the x-th solution (SPy) is:

SP, = wyppgnormkE, + (1 — wyppg)normDP, (24)

Finally, the vector with the largest score is chosen as Xatdb.

4. STATEMENT OF THE OPTIMIZATION PROBLEM

The objective of spillway design, a process comprising two primary steps, is to ensure a safe
and cost-effective structure that minimizes the combined cost of the spillway and the dam.
The initial step involves selecting the type and general dimensions of the spillway to meet
anticipated requirements and site conditions, followed by a detailed hydraulic and structural
design. The first step in preparing the design is to evaluate fundamental data, including
topography, geology, flood hydrography, storage and release requirements. Preliminary
decisions can then be made regarding the type, size, and elevation of the crest, as well as
whether it will be controlled. Various alternative arrangements should be considered, with the
final layout determined based on economic analysis. Additionally, analyzing existing
spillways can provide valuable insights into trends and preferences for spillway types under
specific conditions. This section focuses on the general procedure for overall cascade stilling
basins design.
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4.1. Design Procedure

Only three- and four-stepped cascades have been considered because other conditions may
lead to infeasible solutions [4]. No uncertainty is considered for design parameters. Here, the
decision variables are height of falls (Pi) and length of stilling basins (Li) as shown in Figure
1 and there are hydraulic and topographic criteria, which will be considered as constraints of
the optimization problem and must be fulfilled.

Rock Profile

River Bed

L

Figure 1. Longitudinal section of a typical cascade stilling basin [5]

Now the traditional VP method is presented step by step [32]:
1) The height of the last cascade (Ht) must be determined by the following equation:

_ 9Yia
L 7.8¢3

(25)

where g is the gravitational acceleration; yiq is the water depth of design discharge at tailwater;
and qq is the design discharge per unit width.

If water depth after hydraulic jump (y2) is greater than yq, the floor should be lowered by
Az, which is the maximum difference between Free Jump Hydraulic Curve (FJHC) and Tail
Water Rating Curve (TWRC). A typical configuration of these two curves is shown in Figure
2. Therefore, the height of the last cascade (Pt) and yw will be modified as follows:

P, = H; + Az, (26)

1.67q35 PO
Y2a = Yea = go—z5t (27)
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Figure 2. Free Jump Hydraulic Curve and Tail Water Rating Curve for Tehri dam [33]

2) The longitudinal length of the last cascade (x:) is determined using equation (28), where hop
is obtained from equation (29), and c is the discharge coefficient.

P, 1
x; = 1.455h (h—t)1.85 (28)
0D
qa 2
hop = 3
0D (C\/E) (29)

Length of the last stilling basin (L;) can be determined from equation (30) if Froude number
before hydraulic jump is equal to or greater than 4.5, otherwise, it is calculated from

Ly = 4.25y,,4 (30)
L, = 2.80y,4 (31)
3) With assuming the number of cascades (N), the height of the other cascades (Pp) will be

determined from equation (32) by trial and error. Here, this height is assumed equal for all
cascades, except the last one. In this equation, Ho is the dam height above tailwater.

H,—H 0.5P0.25
p=—0 Tty 16710 2 9a

p N —1 g02s _(Cm

4) To form hydraulic jump in stilling basins, the crest of each fall (preferably of ogee profile)

2
)3 +0.179— 0t (32)
g~ Pp'
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should be raised as Az, which can be obtained from
(N-1)(P, — Az,) = Hy— H, (33)
The Froude number at beginning of stilling basins (before hydraulic jump) is shown by Fr;

and is calculated from equation (34). Consequently, the water depths before (y1) and after (y-)
hydraulic jump are determined from equations (35) and (36), respectively.

gO.SP1.5 4 2 1 3
o (0.5Fr3 + Fr, ® — 3 7)? (34)
3c3

qa 2

= 3
yl (\/EFT'I) (35)
Y2 _ 2 36
;_0.5( 1+ 8Fr2 —1) (36)

The length of stilling basins in preceding falls (Lp) will be calculated from equation (37)
where m is a constant and is considered to be 1 in this study.

L, = 6(my, —y1) 37)

5) Horizontal length of preceding falls (xp) is similar to last cascade and is equal to:

= 1.455h,, (—)185 (38)

Finally, the total length of all cascades and stlllmg basms (L) is defined as:
L=(N—-1(x,+Ly)+ (x; + L) (39)

4.2 Objective Function and Constraints

As mentioned above, the goal is to design the structure optimally. Like any other optimization
problem, this problem needs an objective function and some constraints which are presented
here:

f= Z(ﬂ(Pi, ) + f2(Py 1) (40)

where f; and f, are excavation and concrete costs; N is the total number of cascades; P;j is the
height of i-th fall; and I; is the length of i-th stilling basin. As mentioned above, the last two
parameters are decision variables.

Regarding the problem constraints, the first constraint, g1, describes the total available
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height where Azy is assumed to be zero [1]. Az is presented in equation (42) and is dependent
on Pi.

N
g1 = Z(Pi — Az) + Az, < H, (41)
i=1
0.5 p0.25
qqa” P da 2 da
Az; = 1.671 — 3+0.179 —=
Zi g025 (Cm) g05pOS (42)
The second constraint (g2), is the total available length (Lz):
N
9= ) i+x) <L (43)
i=1

Equations (41-43) are topographical constraints. Other constraints are all hydraulic
constraints which describe the maximum and minimum allowable height of each fall:

93 = Py < Py (44)
9s =P 2 Py (45)
The upper- and lower bounds in the above equations are determined by equations (46) and

(47). Note that the Froude number has maximum and minimum values of 9 and 4.5,
respectively.

2
q§ 4 _2
Prax = —2 (05Fr} o +Fr o ——3 (46)
g§ 23¢3
2
qg 4 _2 1
Poin = =3 (05Fr) . +Fr, 2 —— (47)
g§ 23c3

Finally, the last constraint is related to the minimum length of stilling basins due to
formation of hydraulic jJump. This minimum length can be calculated from equation (30) for
the last cascade or from equation (37) for preceding cascades.

gs =l = limmn (48)

The objective function must reflect the effect of the above-mentioned constraints;
therefore, it must be reformulated. Equation (49) is the new objective function in which Fcost
must be minimized.
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n
Feost = f(1 + ¢, Z A (49)
i=1

where &1 and & are error constants and are considered equal to 1.2 and 1.5, respectively; Ai is
the normalized value of each constraint, which is not fulfilled; and n is the number of all
constraints.

5. DESIGN EXAMPLE

The optimization problem was solved for Tehri dam spillway as an example. Tehri dam is an
earth and rock fill dam constructed on the river Bhagirathi, a tributary of the river Ganga in
the central Himalayan region of India [32]. The spillway is located on the right abutment of
the dam. A single-stage hydraulic jump-type stilling basin as spillway would need a significant
riverbed excavation. A chute spillway followed by ski-jump bucket would saturate the side
hills and result in sheet landslides. Thus, a series of cascades and stilling basins was adopted
as energy dissipation system. Design data and results of VP method are listed in table 1 and
2, respectively [32].

Table 1: Design data for Tehri dam [32]

Design Data Value
Design discharge 11,000 m¥/s
Spillway crest length 95 m
Total height of spillway 218 m
Tailwater depth at design discharge 29.2m
Cumulative horizontal length in spillway 778 m

Table 2: Results of VP method for three and four cascades [3]

Pp (m) Lp (M) Xp (M) Azp (M) L (m)
3 93.55 175.39 58.15 17.8 041.28
4 65.75 156.61 48.06 15.25 788.20

where L is the total length of the structure. The traditional VP method results x, Lt, Azt and Py
equal to 49.16, 125.04, 2.06 and 68.56 m, respectively [3].

6. RESULTS AND DISCUSSION

The optimization was conducted for two case studies with three and four cascades using a
fixed number of iterations (i.e., 50) for each method and was repeated 50 times with different
starting random number seeds. The obtained convergence curves for the best and mean
solutions for the Tehri dam are shown in Figure 3.
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Figure 3. Convergence properties of the GBO and dFDB for (a) three and (b)four cascades
obtained from 50 iterations

As shown in Figure 3(a) for the three-cascade structure, both methods converge to the best
solution in fewer than 50 iterations. The GBO yields a better best solution, whereas the dFDB
method exhibits slightly lower mean values across all iterations. This indicates that the
modifications to GBO did not result in significant improvement for this case study. For the
four-cascade structure, as shown in Figure 3(b), the convergence behavior is slightly different.
Both methods require more iterations to reach the best solution. Although GBO achieves a
slightly better best result, dFDB consistently maintains a lower objective function value for
the mean of all iterations, demonstrating its robustness.

The comparison of the two methods, focusing on the best, average and the worst costs, is
also presented in Tables 3 and 4. In terms of the best cost, the difference between the two
methods is negligible. However, in both cases, dFDB shows a better performance in terms of
the average and worst costs.

Table 3: Performance comparison for case study 1

Method Best cost Average cost Worst cost
GBO 394,030,283 420,987,605 607,232,548
dFDB 395,460,532 408,674,030 435,678,574

Table 4: Performance comparison for case study 2

Method Best cost Average cost Worst cost
GBO 256,309,109 298,547,179 591,250,501
dFDB 256,769,170 275,767,089 315,780,667

Moreover, Table 5 presents the optimum design obtained from the two methods for both
three and four cascades. Both methods significantly improved the objective function, with
GBO vyielding slightly better results. The objective function improvement for three cascades
was 72.5% with GBO and 72.4% with dFDB. For four cascades, the improvement was 71.1%
with GBO and 71% with dFDB. These findings suggest that the modification of GBO into
dFDB has a minor impact on solving this optimization problem. Additionally, the structure
with four cascades is less costly than the one with three cascades.
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Table 5: Best answer of each method for three and four cadcades

Decision N=3 N=4

Variable GBO dFDB GBO dFDB
P1 (m) 56.97 56.44 40.00 40.03
P (m) 71.84 72.66 42.04 42.02
P3 (m) 86.20 86.17 67.31 67.28
P4 (M) - - 80.32 80.44
L1 (m) 295.78 272.11 147.22 172.77
Lo (m) 170.28 191.20 155.65 135.76
Ls (m) 133.10 135.87 159.62 161.30
Ls (M) - - 129.97 130.29
Cost 394,030,283 395,460,532 256,309,109 256,769,170

Finally, Table 6 compares the excavation volumes resulting from GBO and dFDB with
those obtained from other meta-heuristic methods. Although the exact objective functions
were not provided in the referenced articles, the excavation volumes can still be compared.
According to Table 6, both GBO and dFDB outperform all other methods in terms of
excavation volume, demonstrating that these two methods are highly effective for this
engineering problem. For four cascades, this excavation volume is reduced by GBO 58.69%,
21.88%, 14.84% and 13% in comparison with ABC, DP, GA-1 and PSO-1; respectively. This
volume is reduced by dFDB 58.61%, 21.74%, 14.68% and 12.85% in comarison with ABC,
DP, GA-1 and PSO-1; respectively. The results indicate that both GBO and dFDB deliver
superior performance compared to alternative optimization approaches, making them suitable
choices for this specific engineering challenge.

Table 6: Excavation volume in unit width resulted from different optimization methods

Method N=3 N=4
GBO 16,947 11,091
dFDB 16,909 11,111
PSO-1[2] - 12,749
GA-1[2] - 13,023
DP [1] 21,286 14,198
PSO-3 [21] 27,382 25,492
IPSO [3] 31,574 -
IABC [3] 31,574 -
PSO-2 [4] 31,574 25,187
GA-2 [4] 31,576 27,103
ABC [4] 31,595 26,846
GSA [4] 33,389 27,381
CAA [5] 33,536 20,625
VP [6] 61,946 38,400
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7. CONCLUSION

In this study, two gradient-based metaheuristic algorithms, Gradient-Based Optimizer (GBO)
and dynamic Fitness-Distance Balance (dFDB), were applied to the optimization of cascade
stilling basins with the aim of enhancing design efficiency and cost-effectiveness. The results
obtained demonstrate promising performance of both algorithms in achieving cost-effective
designs. Comparisons were made between the performance of GBO and dFDB across two
scenarios, involving structures with three and four cascades.

The convergence curves illustrated consistent convergence to optimal solutions within 50
iterations for both methods. GBO generally yielded slightly better results in terms of objective
function values, although dFDB exhibited greater robustness, as indicated by consistently
lower objective function values across all iterations. Compared to the traditional VP method,
GBO and dFDB showed objective function improvements of 72.5% and 72.4% for three
cascades, and 71.1% and 71% for four cascades, respectively. These findings suggest that
while both methods are effective, the modification of GBO into dFDB has a minor impact on
optimization results.

Additionally, comparison of excavation volumes resulting from GBO and dFDB with those
from other optimization methods (e.g., DP, GA, PSO, and ABC) confirmed the superior
performance of the utilized metaheuristic approaches. Both GBO and dFDB outperformed
alternative methods, demonstrating their effectiveness in achieving cost-efficient designs for
cascade stilling basins. In conclusion, this study underscores the efficacy of gradient-based
metaheuristic optimization techniques in optimizing the design of cascade stilling basins,
offering a robust and efficient means of achieving cost-effective designs while balancing
hydraulic performance requirements.

For future research endeavors in this domain, two recommendations are proposed. Firstly,
investigating the applicability of other metaheuristic optimization algorithms, such as chaos
game optimization [10], colliding bodies optimization [35], and chaotic swarming of particles
(CSP) [36] combined with new sampling schemes [37], could provide valuable insights into
their effectiveness and comparative performance in optimizing cascade stilling basin designs.
Secondly, exploring the integration of machine learning techniques to enhance the predictive
capabilities of optimization models and further improve the efficiency and accuracy of design
optimization processes represents a promising avenue for future research in this field. By
pursuing these avenues, researchers can continue to advance the state-of-the-art in optimizing
cascade stilling basin designs, ultimately contributing to the development of more resilient
and cost-effective hydraulic infrastructure solutions.
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