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ABSTRACT 
 

Spillway design poses a significant challenge in effectively managing the energy within water 

flow to prevent erosion and destabilization of dam structures. Traditional approaches typically 

advocate for standard hydraulic jump stilling basins or other energy dissipators at spillway 

bases yet constructing such basins can be prohibitively large and costly, particularly when 

extensive excavation is necessary. Consequently, growing interest in cascade hydraulic 

structures has emerged over recent decades as an alternative for energy dissipation. These 

structures utilize a series of arranged steps to facilitate water flow, effectively dissipating 

energy as it traverses the cascade. Commonly deployed in scenarios involving high dams or 

steep gradients, the stepped configuration ensures efficient aeration and substantial energy 

dissipation along the structure, thereby reducing the size and cost of required stilling basins. 

Despite extensive research on hydraulic characteristics using physical and numerical models 

and established design procedures, construction cost optimization of step cascades remains 

limited but promising. This paper aims to address this gap by employing two novel gradient-

based meta-heuristic optimization techniques to enhance the efficiency and cost-effectiveness 

of cascade stilling basin designs. Through comparative analyses and evaluations, this study 

demonstrates the efficacy of these techniques and offers insights for future research and 

applications in hydraulic structures design optimization. 
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1. INTRODUCTION 
 

The dam structure comprises various integral components, including the reservoir, body, 

spillway, energy dissipation system, tunnel, and power plant. An essential component within 
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this structure is the energy dissipation system, necessary to mitigate the effects of hydraulic 

forces. As water flows from the reservoir to the downstream, the conversion of static head to 

kinetic energy occurs, potentially resulting in high velocities and significant pressures. 

Without proper dissipation, these forces can pose a threat to downstream structures. 

Commonly employed energy dissipation systems include stilling basins, roller buckets, and 

sill block aprons [1-4]. 

In the case of high-head dams, traditional combinations of spillways, such as siphon 

spillways, lateral spillways, and ogee spillways, may prove impractical due to insufficient 

tailwater depth or unsuitable site conditions [3-5]. These conventional designs, coupled with 

energy dissipation systems, often necessitate large dimensions. To mitigate this issue, cascade 

stilling basins offer a viable alternative. A cascade stilling basin comprises a series of 

successive free-fall spillways, each followed by a stilling basin. This arrangement effectively 

reduces flow velocity and Froude number, eliminating the risks associated with cavitation, 

abrasion, and vibration [1]. Moreover, by minimizing dimensions, cascade stilling basins also 

contribute to cost savings in spillway construction [2]. 

In hydraulic engineering, cascades often replace smooth chutes and are used in structures 

such as flood relief systems or sewage channels. According to Chanson [6], two distinct flow 

states must be distinguished in cascades – nappe flow and skimming flow. In nappe flow, 

energy conversion occurs with or without a complete hydraulic jump. In skimming flow, the 

water shoots over the steps, forming standing waves that extract some energy from the main 

flow. The type of flow is determined by the slope of the cascade, defined by the ratio of step 

height to step depth. Typically, flatter cascades exhibit nappe flow, while steeper ones show 

skimming flow. The step cascades allow water to plunge from step to step at low flows, 

dissipating much of its energy. At higher flows, the water skims over the steps, creating 

turbulent eddies in the step pockets. These eddies reduce flow velocity, thus decreasing the 

required size of the stilling basin for the hydraulic jump. Additionally, the turbulent eddies 

trap air, causing the flow to become highly aerated and increasing its bulk depth, further 

reducing the average flow velocity. 

Optimizing the design of cascade stilling basins is essential to ensure the efficiency and 

cost-effectiveness of the dam structure. In recent decades, numerous optimization methods 

have been developed to solve engineering design problems, ranging from classical Linear 

Programming (LP) and Non-Linear Programming (NLP) to more advanced techniques like 

Dynamic Programming (DP) and meta-heuristic algorithms (see, e.g., [7-13]). Among these 

approaches, meta-heuristic algorithms [14] offer several significant advantages over 

traditional optimization techniques. 

Firstly, meta-heuristic algorithms are highly flexible and can be easily adapted to a wide 

range of optimization problems without requiring specific mathematical formulations. This 

flexibility allows them to effectively handle complex, non-linear, and multi-modal problems 

that often arise in the design of hydraulic structures. Traditional methods like LP and NLP 

may struggle with such complexities due to their reliance on gradient information and other 

specific problem structures. Secondly, meta-heuristic algorithms can escape local optima, 

which is a common limitation of many classical optimization techniques. These methods often 

employ stochastic search strategies and population-based approaches that enhance their ability 

to explore the global search space thoroughly. This characteristic is particularly beneficial in 

optimizing the design of cascade stilling basins, where the solution landscape can be highly 
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irregular and fraught with multiple local optima.  

Additionally, meta-heuristic algorithms often require fewer assumptions about the problem 

domain, making them more robust and versatile in practical applications. They can incorporate 

a variety of constraints and objective functions, which is essential for balancing the multiple 

performance and cost criteria involved in dam construction projects. This robustness contrasts 

with traditional methods that might need extensive modifications to accommodate different 

constraints and objectives. Furthermore, the iterative nature of meta-heuristic algorithms 

allows for continuous improvement and refinement of solutions. This iterative process is 

advantageous for complex engineering problems where initial solutions can be progressively 

enhanced through successive iterations. 

In this paper, meta-heuristic algorithms are employed to optimize the design of cascade 

stilling basins. The effectiveness of two new meta-heuristics inspired by the gradient-based 

Newton’s method is explored. Gradient-based meta-heuristics integrate gradient and 

population-based techniques to determine the search direction, with Newton's method guiding 

the exploration of the search space. Unlike gradient methods and conventional optimization 

approaches, which typically adhere to a predetermined search direction towards the optimal 

solution, these algorithms adjust their search direction as they navigate the search space. In 

this study, the Gradient-based Optimizer (GBO), a novel population-based metaheuristic, is 

utilized, which has demonstrated its efficacy in solving various engineering problems [15], 

image processing [16], and task scheduling [17]. Previous studies have shown that GBO 

outperforms many other meta-heuristic methods in terms of solution quality and convergence 

[15-17]. Additionally, an improved version of GBO called the dynamic Fitness-Distance 

Balance (dFDB) algorithm is applied [18]. By leveraging the strengths of GBO and 

incorporating the dynamic fitness-distance balancing technique, the dFDB offers a promising 

avenue for solving optimization problems [19]. Through the application of these meta-

heuristic algorithms, this paper aims to achieve an optimized design for cascade stilling basins 

while balancing hydraulic performance requirements with cost considerations. 

 

 

2. LITERATURE REVIEW 
 

In contrast to the belief that cascades for energy dissipation are a modern innovation 

introduced with new construction methods such as RCC and gabions, these channels have 

been used since ancient times. Historically, stepped channels were designed to enhance the 

stability of structures like overflow weirs and to dissipate flow energy. This technique was 

independently developed by several ancient civilizations. In fact, around 16 dams featuring 

stepped spillways were constructed in antiquity. These dams varied in height from 1.4 m to 

50 m, in width from 3.7 m to 150 m, and handled maximum discharges of up to about 9000 

m3/sec. The steps on these spillways ranged from 0.6 m to 5 m in height, with the number of 

steps varying between 2 and 14 [20]. 

The benefits of cascade structures lie in their gradual reduction of water kinetic energy, 

leading to heat transformation, thereby allowing for a reduction in the size of the stilling basin. 

These structures are particularly suited for dam spillways or combined sewer systems, 

ensuring the safe discharge of water over significant drops. Stepped chutes are frequently 

integrated into dam spillways and are also utilized in park settings, enhancing natural 
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landscapes. In a cascade stilling basin, each step corresponds to an isolated stilling basin for 

hydraulic jump. Water descends from level to level on stepped chutes, with optimal dissipation 

expected when a hydraulic jump occurs. For steeper stepped chutes and high discharge rates, 

skimming flow may occur, where the step acts as a roughness element, promoting vigorous 

mixing of water with air [21]. 

The impact of step geometry, number of steps, and relative energy loss has been 

extensively presented and discussed in several studies. Experiments on physical models 

conducted over the past decades have provided deeper insights into flow characteristics and 

energy dissipation performance. For instance, Thorwarth [22] investigated flow instabilities 

on pooled stepped chutes with gentle slopes of 8.9˚ and 14.6˚, which could pose safety risks 

for dams. Chinnarasri and Wongwises [23] observed that energy dissipation was 

comparatively lower on flat stepped chutes than on steps with end sills for a 45˚ chute slope. 

Barani et al. [24] studied energy dissipation on a stepped spillway model with a 41.41˚ slope 

and 21 steps, finding that pooled stepped spillways dissipated more energy than flat stepped 

spillways. 

Finding the optimal combination of dimensions and configurations for cascade stilling 

basins remains a challenging topic. Optimization of these structures falls into two main 

categories. The first category focuses on maximizing hydraulic performance through 

experimental investigations and hydraulic simulations. For instance, Tabari and Tavakoli [25] 

explored the relationship between energy reduction, the number of steps, step heights, and 

flow discharge. Frizell et al. [26] demonstrated how the energy dissipation system and the 

incline of steps affect the probability of cavitation. Roushangar et al. [27] simulated the energy 

dissipation of these systems using empirical data, while Shahheydari et al. [28] studied the 

correlation between flow coefficient and energy dissipation. Mero and Mitchell [29] compared 

the effectiveness of horizontal steps versus inclined or flat curved steps in dissipating energy. 

Additionally, Aal et al. [30] examined the impact of over-flow, through-flow, and under-flow 

breakers on energy dissipation, and Afshoon et al. [31] investigated the influence of step 

roughness. 

The second category concentrates on optimizing the design of cascade stilling basins, with 

a particular focus on minimizing construction costs. There has been limited research in this 

area. For the first time, Vittal and Porey [32] (hereafter referred to as VP) introduced a 

systematic method for designing cascade stilling basins primarily focused on meeting 

hydraulic criteria. The VP method examines only a restricted set of alternatives before 

selecting the most favorable one. It determines the number and height of falls, along with the 

length of stilling basins, and then optimizes graphically with the objective of minimizing 

excavation volumes. The review of existing studies in this category indicates that various 

methods have been employed to enhance design efficiency. In all these studies, including the 

present one, the height of each fall and the length of the stilling basin beneath it are considered 

as decision variables. One of the first attempts to minimize the cost of cascade stilling basins 

was made by Bakhtyar et al. [1] using the Dynamic Programming (DP) method. Their results 

indicated a cost reduction of 34.4% and 31% compared to the traditional VP method for four 

cascades, both with and without considering concrete works, respectively. Afshar and 

Daraeikhah [5] later applied the Continuous Ant Algorithm (CAA), achieving improvements 

of approximately 18% and 16% for three and four steps, respectively. Daraeikhah et al. [33] 

tackled the problem using the Particle Swarm Optimization (PSO) algorithm, which 
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outperformed the VP results. Jazayeri and Moeini [3] explored four meta-heuristic algorithms, 

namely Artificial Bee Colony (ABC), PSO, and their improved versions (IABC and IPSO), 

and compared the outcomes with the VP method and Genetic Algorithm (GA). They 

concluded that VP failed to find the optimal solution, with IABC and IPSO showing better 

performance than GA for both three- and four-step cases. Finally, Jazayeri and Moeini [4] 

employed four different meta-heuristic algorithms: GA, Gravitational Search Algorithm 

(GSA), PSO, and ABC. The GA results surpassed those of VP, while the other three methods 

marginally outperformed GA for both three- and four-stepped cascades. PSO yielded the best 

results, reducing costs by 17.7% and 16.45% for three and four cascades, respectively. 

Overall, the review of the literature highlights the extensive research conducted on the 

hydraulic performance of cascade stilling basins. These studies have primarily explored 

various aspects such as the impact of step geometry, number of steps, flow characteristics, and 

energy dissipation efficiencies. However, in terms of cost optimization, there is a noticeable 

lack of literature utilizing diverse methodologies to reduce the construction costs associated 

with cascade stilling basins. Despite the existing advancements, there remains a need for 

continued exploration of innovative optimization techniques to enhance the design efficiency 

and cost-effectiveness of cascade stilling basins. This paper addresses this gap by applying 

two new meta-heuristic algorithms for the optimum cost design of step cascades, thereby 

contributing to the ongoing development of more effective and economical cascade stilling 

basins. 

 

 

3. THE UTILIZED OPTIMIZATION METHODS 
 

3.1. Gradient-based Optimizer 

The first method employed to optimize the design is the Gradient-based Optimizer (GBO), a 

novel meta-heuristic optimization algorithm [34]. Inspired by the gradient-based Newton's 

method, GBO utilizes two main operators. The first operator, the Gradient Search Rule (GSR), 

accelerates the convergence rate, while the second operator, the Local Escaping Operator 

(LEO), helps escape local optima. Together, these operators, along with a set of vectors, 

effectively explore the search space. 

First, three parameters called pr (probability), M (total number of iterations) and ε (small 

number in range of [0,0.1]) must be assigned. The algorithm needs initialization, so an initial 

population X0 = [x0,1, x0,2, …, x0,D] is generated, in which D is the number of variables. Then, 

the objective function value f(X0) must be evaluated for each member of population and the 

best and worst solutions will be specified. 

In each iteration (m), the next position of each member of population (n) is a vector and 

can be calculated using equation (1). 

 

𝑋𝑛,𝑖
𝑚+1 = 𝑟𝑎(𝑟𝑏𝑋1𝑛

𝑚 + (1 − 𝑟𝑏)𝑋2𝑛
𝑚) + (1 − 𝑟𝑎)𝑋3𝑛

𝑚 (1) 

 

where 𝑋1𝑛
𝑚, 𝑋2𝑛

𝑚 and 𝑋3𝑛
𝑚 are vectors and can be calculated using equations (2-4); ra and rb 

are random numbers selected from [0,1]. 
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𝑋1𝑛
𝑚 = 𝑥𝑛

𝑚 − (𝑟𝑎𝑛𝑑𝑛)𝜌1

2∆𝑥(𝑥𝑛
𝑚)

𝑦𝑝𝑛
𝑚 − 𝑦𝑞𝑛

𝑚 + 𝜀
+ (𝑟𝑎𝑛𝑑)𝜌2(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑛

𝑚) (2) 

 

𝑋2𝑛
𝑚 = 𝑥𝑏𝑒𝑠𝑡 − (𝑟𝑎𝑛𝑑𝑛)𝜌1

2∆𝑥(𝑥𝑛
𝑚)

𝑦𝑝𝑛
𝑚 − 𝑦𝑞𝑛

𝑚 + 𝜀
+ (𝑟𝑎𝑛𝑑)𝜌2(𝑥𝑟1

𝑚 − 𝑥𝑟2
𝑚 ) (3) 

 

𝑋3𝑛
𝑚 = 𝑥𝑛

𝑚 − 𝜌1(𝑋2𝑛
𝑚 − 𝑋1𝑛

𝑚) (4) 

 

where randn is a normally distributed random number; rand is a random number in [0,1]; ρ1 

and ρ2 are defined by equation (5); xbest is the best solution obtained during the optimization 

process; and 𝑥𝑛
𝑚 is the current vector. 

 

𝜌1 = (𝑥. 𝑟𝑎𝑛𝑑)𝛼 − 𝛼 , 𝜌2 = (2. 𝑟𝑎𝑛𝑑)𝛼 − 𝛼  (5) 

 

These parameters depend on α and β. Both can be obtained from equations (6) and (7), 

respectively. 

 

𝛼 = |𝛽sin (
3𝜋

2
+ sin (𝛽

3𝜋

2
))| 

(6) 

 

𝛽 = 𝛽𝑚𝑖𝑛 + (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛)(1 − (
𝑚

𝑀
)3)2 (7) 

 
where βmin and βmax are set to 0.2 and 1.2, respectively. ∆x, which is the other parameter used 

in equations (2) and (3) is defined as follows 

 

∆𝑥 = 𝑟𝑎𝑛𝑑(1: 𝑁)|𝑠𝑡𝑒𝑝| (8) 

 

where rand(1:N) is a random number with N dimensions and step is calculated using equation 

(9). 

𝑠𝑡𝑒𝑝 =
(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑟1

𝑚 ) + 𝛿

2
 (9) 

 

δ is another parameter which can be calculated by equation (10). 

 

𝛿 = 2𝑟𝑎𝑛𝑑 |
𝑥𝑟1

𝑚 + 𝑥𝑟2
𝑚 + 𝑥𝑟3

𝑚 + 𝑥𝑟4
𝑚

4
− 𝑥𝑛

𝑚| (10) 

 

where r1, r2, r3 and r4 are different random integers from [1,N] and not equal to n, and N is the 

population size. The last parameters in equations (2) and (3) are 𝑦𝑝𝑛
𝑚 and 𝑦𝑞𝑛

𝑚, defined by 

equations (11) and (12). 

 

𝑦𝑝𝑛
𝑚 = (𝑟𝑎𝑛𝑑)(

𝑧𝑛+1
𝑚 + 𝑥𝑛

𝑚

2
+ (∆𝑥)(𝑟𝑎𝑛𝑑)) (11) 
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𝑦𝑞𝑛
𝑚 = (𝑟𝑎𝑛𝑑)(

𝑧𝑛+1
𝑚 + 𝑥𝑛

𝑚

2
− (∆𝑥)(𝑟𝑎𝑛𝑑)) (12) 

 
Note that 𝑧𝑛+1

𝑚  is calculated using the following equation where xworst is the worst solution 

obtained during the optimization process. 

 

𝑧𝑛+1
𝑚 = 𝑥𝑛

𝑚 − 𝑟𝑎𝑛𝑑𝑛
(2∆𝑥)𝑥𝑛

𝑚

𝑥𝑤𝑜𝑟𝑠𝑡 − 𝑥𝑏𝑒𝑠𝑡 + 𝜀
 (13) 

 

Also, the LEO produces a new position if a random number is less than pr. This new 

position is calculated from equation (14) if a random number from [0,1] is less than 0.5. 

Otherwise, it is calculated from equation (15). 

 
𝑋𝑛

𝑚+1 = 𝑋𝐿𝐸𝑂
𝑚 = 𝑋𝑛

𝑚+1 + 𝑓1(𝑢1𝑥𝑏𝑒𝑠𝑡 − 𝑢2𝑥𝑘
𝑚) + 𝑓2𝜌1(𝑢3(𝑋2𝑛

𝑚 − 𝑋1𝑛
𝑚) + 𝑢2(𝑥𝑟1

𝑚 − 𝑥𝑟2
𝑚 ))/2 (14) 

 
𝑋𝑛

𝑚+1 = 𝑋𝐿𝐸𝑂
𝑚 = 𝑥𝑏𝑒𝑠𝑡 + 𝑓1(𝑢1𝑥𝑏𝑒𝑠𝑡 − 𝑢2𝑥𝑘

𝑚) + 𝑓2𝜌1(𝑢3(𝑋2𝑛
𝑚 − 𝑋1𝑛

𝑚) + 𝑢2(𝑥𝑟1
𝑚 − 𝑥𝑟2

𝑚 ))/2 (15) 

 

where f1 is a uniform random number in the range of [-1,1]; f2 is a random number from a 

normal distribution with mean of 0 and standard deviation of 1; and u1, u2 and u3 can be 

obtained from equations (16) to (18), respectively. 

 

𝑢1 = 2𝐿1𝑟𝑎𝑛𝑑 + (1 − 𝐿1) (16) 

 

𝑢2 = 𝐿1𝑟𝑎𝑛𝑑 + (1 − 𝐿1) (17) 

 

𝑢3 = 𝐿1𝑟𝑎𝑛𝑑 + (1 − 𝐿1) (18) 

 

where 𝑥𝑘
𝑚 is presented by the following equation 

 

𝑥𝑘
𝑚 = 𝐿2𝑥𝑝

𝑚 + (1 − 𝐿2)𝑥𝑟𝑎𝑛𝑑 (19) 

 

where L1 is a binary parameter depending on μ1. If μ1 is less than 0.5, L1 is 1, otherwise, it is 

0. L2 is similar to L1 but depending on μ2. μ1 and μ2 are random numbers in the range of [0,1]. 

𝑥𝑝
𝑚 is a randomly selected solution of the population and xrand is a new solution. Then, the 

positions 𝑥𝑏𝑒𝑠𝑡
𝑚  and 𝑥𝑤𝑜𝑟𝑠𝑡

𝑚   will be updated. This loop will continue until the last iteration 

(m=M) and the best position (𝑥𝑏𝑒𝑠𝑡
𝑚  ) will be the outcome of the method. 

 

3.2. Dynamic Fitness-distance Balance 

The second method, dynamic Fitness-distance Balance (dFDB) is based on GBO method. The 

GBO has a premature convergence problem. Therefore, its guide selection process in LEO 

must be redesigned to improve overall search performance using dFDB method [18]. There 

are three cases of this method presented by [18], but only the second case is used in this paper. 

In this case, 20% of the search process lifecycle uses LEO equations from GBO. The other 

80% of this process is as follows. 
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If a random number is less than 0.5, 𝑥𝑏𝑒𝑠𝑡
𝑚  is calculated from equation (20); otherwise, it is 

calculated from equation (21). 

 

𝑋𝐿𝐸𝑂
𝑚 = 𝑋𝑛

𝑚+1 + 𝑓1(𝑢1𝑥𝑏𝑒𝑠𝑡 − 𝑢2𝑥𝑘
𝑚) + 𝑓2𝜌1(𝑢3(𝑋2𝑛

𝑚 − 𝑋1𝑛
𝑚) + 𝑢2(𝑥𝑑𝑓𝑑𝑏 − 𝑥𝑟2

𝑚))/2 (20) 

 
𝑋𝐿𝐸𝑂

𝑚 = 𝑋𝑑𝑓𝑑𝑏 + 𝑓1(𝑢1𝑥𝑏𝑒𝑠𝑡 − 𝑢2𝑥𝑘
𝑚) + 𝑓2𝜌1(𝑢3(𝑋2𝑛

𝑚 − 𝑋1𝑛
𝑚) + 𝑢2(𝑥𝑟1

𝑚 − 𝑥𝑟2
𝑚 ))/2 (21) 

 

To calculate Xdfdb, first, a vector of normalized distance values of the vectors from best 

answer (normDPx) is calculated for each of the existing answer vectors using equation (22). 

In this equation, k is the dimension of each vector, which is the number of variables. 

 

𝐷𝑃𝑥 = √(𝑃𝑥
1 − 𝑃𝑏𝑒𝑠𝑡

1 )2 + ⋯ + (𝑃𝑥
𝑘 − 𝑃𝑏𝑒𝑠𝑡

𝑘 )2 (22) 

 

Then, the normal fitness values of the answer vectors (normFx) is calculated. A weighting 

coefficient, called wdFDB is calculated by equation (23). 

 

𝑤𝑑𝐹𝐷𝐵 =
1

max 𝐹𝐸𝑠
(1 − 𝑙𝑏) + 𝑙𝑏 (23) 

 
where lb is the minimum value of wdFDB and maxFEs is the maximum number of evaluations 

of the objective function. The score of the x-th solution (SPx) is: 

 

𝑆𝑃𝑥 = 𝑤𝑑𝐹𝐷𝐵𝑛𝑜𝑟𝑚𝐹𝑥 + (1 − 𝑤𝑑𝐹𝐷𝐵)𝑛𝑜𝑟𝑚𝐷𝑃𝑥 (24) 

 

Finally, the vector with the largest score is chosen as Xdfdb. 

 

 

4. STATEMENT OF THE OPTIMIZATION PROBLEM 
 

The objective of spillway design, a process comprising two primary steps, is to ensure a safe 

and cost-effective structure that minimizes the combined cost of the spillway and the dam. 

The initial step involves selecting the type and general dimensions of the spillway to meet 

anticipated requirements and site conditions, followed by a detailed hydraulic and structural 

design. The first step in preparing the design is to evaluate fundamental data, including 

topography, geology, flood hydrography, storage and release requirements. Preliminary 

decisions can then be made regarding the type, size, and elevation of the crest, as well as 

whether it will be controlled. Various alternative arrangements should be considered, with the 

final layout determined based on economic analysis. Additionally, analyzing existing 

spillways can provide valuable insights into trends and preferences for spillway types under 

specific conditions. This section focuses on the general procedure for overall cascade stilling 

basins design. 
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4.1. Design Procedure 

Only three- and four-stepped cascades have been considered because other conditions may 
lead to infeasible solutions [4]. No uncertainty is considered for design parameters. Here, the 

decision variables are height of falls (Pi) and length of stilling basins (Li) as shown in Figure 

1 and there are hydraulic and topographic criteria, which will be considered as constraints of 

the optimization problem and must be fulfilled. 

 

Figure 1. Longitudinal section of a typical cascade stilling basin [5] 
  

Now the traditional VP method is presented step by step [32]: 

1) The height of the last cascade (Ht) must be determined by the following equation: 

 

𝐻𝑡 =
𝑔𝑦𝑡𝑑

4

7.8𝑞𝑑
2 (25) 

 
where g is the gravitational acceleration; ytd is the water depth of design discharge at tailwater; 

and qd is the design discharge per unit width.  

If water depth after hydraulic jump (y2) is greater than ytd, the floor should be lowered by 

∆zt, which is the maximum difference between Free Jump Hydraulic Curve (FJHC) and Tail 

Water Rating Curve (TWRC). A typical configuration of these two curves is shown in Figure 

2. Therefore, the height of the last cascade (Pt) and ytd will be modified as follows: 

𝑃𝑡 = 𝐻𝑡 + ∆𝑧𝑡 (26) 

 

𝑦2𝑑 = 𝑦𝑡𝑑 =
1.67𝑞𝑑

0.5𝑃𝑡
0.25

𝑔0.25
 (27) 
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Figure 2. Free Jump Hydraulic Curve and Tail Water Rating Curve for Tehri dam [33] 

 

2) The longitudinal length of the last cascade (xt) is determined using equation (28), where h0D 

is obtained from equation (29), and c is the discharge coefficient. 

 

𝑥𝑡 = 1.455ℎ0𝐷(
𝑃𝑡

ℎ0𝐷

)
1

1.85 (28) 

 

ℎ0𝐷 = (
𝑞𝑑

𝑐√2𝑔
)

2
3 (29) 

 

Length of the last stilling basin (Lt) can be determined from equation (30) if Froude number 

before hydraulic jump is equal to or greater than 4.5, otherwise, it is calculated from 

 
𝐿𝑡 = 4.25𝑦2𝑑 (30) 

 
𝐿𝑡 = 2.80𝑦2𝑑 (31) 

 
3) With assuming the number of cascades (N), the height of the other cascades (Pp) will be 

determined from equation (32) by trial and error. Here, this height is assumed equal for all 

cascades, except the last one. In this equation, H0 is the dam height above tailwater. 

 

𝑃𝑝 =
𝐻0 − 𝐻𝑡

𝑁 − 1
+ 1.671

𝑞𝑑
0.5𝑃𝑝

0.25

𝑔0.25
− (

𝑞𝑑

𝑐√2𝑔
)

2
3 + 0.179

𝑞𝑑

𝑔0.5𝑃𝑝
0.5

 (32) 

 
4) To form hydraulic jump in stilling basins, the crest of each fall (preferably of ogee profile) 
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should be raised as ∆zp which can be obtained from 

 

(𝑁 − 1)(𝑃𝑝 − ∆𝑧𝑝) = 𝐻0 − 𝐻𝑡 (33) 

 
The Froude number at beginning of stilling basins (before hydraulic jump) is shown by Fr1 

and is calculated from equation (34). Consequently, the water depths before (y1) and after (y2) 

hydraulic jump are determined from equations (35) and (36), respectively. 

 

𝑔0.5𝑃𝑝
1.5

𝑞𝑑

= (0.5𝐹𝑟1

4
3 + 𝐹𝑟1

−
2
3 −

1

2
1
3𝑐

2
3

)
3
2 (34) 

 

𝑦1 = (
𝑞𝑑

√𝑔𝐹𝑟1

)
2
3 (35) 

 
𝑦2

𝑦1

= 0.5(√1 + 8𝐹𝑟1
2 − 1) (36) 

 
The length of stilling basins in preceding falls (Lp) will be calculated from equation (37) 

where m is a constant and is considered to be 1 in this study. 

 
𝐿𝑝 = 6(𝑚𝑦2 − 𝑦1) (37) 

 
5) Horizontal length of preceding falls (xp) is similar to last cascade and is equal to: 

 

𝑥𝑝 = 1.455ℎ0𝐷(
𝑃𝑝

ℎ0𝐷

)
1

1.85 (38) 

Finally, the total length of all cascades and stilling basins (L) is defined as: 

 

𝐿 = (𝑁 − 1)(𝑥𝑝 + 𝐿𝑝) + (𝑥𝑡 + 𝐿𝑡) (39) 

 
4.2 Objective Function and Constraints 

As mentioned above, the goal is to design the structure optimally. Like any other optimization 

problem, this problem needs an objective function and some constraints which are presented 

here: 

 

𝑓 = ∑(𝑓1(𝑃𝑖, 𝑙𝑖) + 𝑓2(𝑃𝑖, 𝑙𝑖))

𝑁

𝑖=1

 (40) 

 
where f1 and f2 are excavation and concrete costs; N is the total number of cascades; Pi is the 

height of i-th fall; and li is the length of i-th stilling basin. As mentioned above, the last two 

parameters are decision variables.  

Regarding the problem constraints, the first constraint, g1, describes the total available 
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height where ∆zN is assumed to be zero [1]. ∆zi is presented in equation (42) and is dependent 

on Pi. 

 

𝑔1 = ∑(𝑃𝑖 − ∆𝑧𝑖) + ∆𝑧𝑡 ≤ 𝐻0

𝑁

𝑖=1

 (41) 

 

∆𝑧𝑖 = 1.671
𝑞𝑑

0.5𝑃𝑖
0.25

𝑔0.25
− (

𝑞𝑑

𝑐√2𝑔
)

2
3 + 0.179

𝑞𝑑

𝑔0.5𝑃𝑖
0.5 (42) 

 

The second constraint (g2), is the total available length (La): 

 

𝑔2 = ∑(𝐿𝑖 + 𝑥𝑖) ≤ 𝐿𝑎

𝑁

𝑖=1

 (43) 

 
Equations (41-43) are topographical constraints. Other constraints are all hydraulic 

constraints which describe the maximum and minimum allowable height of each fall: 

 

𝑔3 = 𝑃𝑖 ≤ 𝑃𝑚𝑎𝑥 (44) 

 
𝑔4 = 𝑃𝑖 ≥ 𝑃𝑚𝑖𝑛 (45) 

 
The upper- and lower bounds in the above equations are determined by equations (46) and 

(47). Note that the Froude number has maximum and minimum values of 9 and 4.5, 

respectively. 

𝑃𝑚𝑎𝑥 =
𝑞

𝑑

2
3

𝑔
1
3

(0.5𝐹𝑟1,𝑚𝑎𝑥

4
3 + 𝐹𝑟1,𝑚𝑎𝑥

−
2
3 −

1

2
1
3𝑐

2
3

) (46) 

 

𝑃𝑚𝑖𝑛 =
𝑞

𝑑

2
3

𝑔
1
3

(0.5𝐹𝑟
1,𝑚𝑖𝑛

4
3 + 𝐹𝑟

1,𝑚𝑖𝑛

−
2
3 −

1

2
1
3𝑐

2
3

) (47) 

 

Finally, the last constraint is related to the minimum length of stilling basins due to 

formation of hydraulic jump. This minimum length can be calculated from equation (30) for 

the last cascade or from equation (37) for preceding cascades. 

 
𝑔5 = 𝑙𝑖 ≥ 𝑙𝑖,𝑚𝑖𝑛 (48) 

 
The objective function must reflect the effect of the above-mentioned constraints; 

therefore, it must be reformulated. Equation (49) is the new objective function in which Fcost 

must be minimized.  
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𝐹𝑐𝑜𝑠𝑡 = 𝑓(1 + 𝜀1 ∑ ∆𝑖

𝑛

𝑖=1

)𝜀2 (49) 

 

where ε1 and ε2 are error constants and are considered equal to 1.2 and 1.5, respectively; ∆i is 

the normalized value of each constraint, which is not fulfilled; and n is the number of all 

constraints. 

 

 

5. DESIGN EXAMPLE 
 

The optimization problem was solved for Tehri dam spillway as an example. Tehri dam is an 

earth and rock fill dam constructed on the river Bhagirathi, a tributary of the river Ganga in 

the central Himalayan region of India [32]. The spillway is located on the right abutment of 

the dam. A single-stage hydraulic jump-type stilling basin as spillway would need a significant 

riverbed excavation. A chute spillway followed by ski-jump bucket would saturate the side 

hills and result in sheet landslides. Thus, a series of cascades and stilling basins was adopted 

as energy dissipation system. Design data and results of VP method are listed in table 1 and 

2, respectively [32]. 

 
Table 1: Design data for Tehri dam [32] 

Design Data Value 

Design discharge 11,000 m3/s 

Spillway crest length 95 m 

Total height of spillway 218 m 

Tailwater depth at design discharge 29.2 m 

Cumulative horizontal length in spillway 778 m 

 
Table 2: Results of VP method for three and four cascades [3] 

N Pp (m) Lp (m) xp (m) ∆zp (m) L (m) 

3 93.55 175.39 58.15 17.8 641.28 

4 65.75 156.61 48.06 15.25 788.20 

 

where L is the total length of the structure. The traditional VP method results xt, Lt, ∆zt and Pt 

equal to 49.16, 125.04, 2.06 and 68.56 m, respectively [3]. 

 

6. RESULTS AND DISCUSSION 
 

The optimization was conducted for two case studies with three and four cascades using a 

fixed number of iterations (i.e., 50) for each method and was repeated 50 times with different 

starting random number seeds. The obtained convergence curves for the best and mean 

solutions for the Tehri dam are shown in Figure 3. 
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Figure 3. Convergence properties of the GBO and dFDB for (a) three and (b)four cascades 

obtained from 50 iterations 

 

As shown in Figure 3(a) for the three-cascade structure, both methods converge to the best 

solution in fewer than 50 iterations. The GBO yields a better best solution, whereas the dFDB 

method exhibits slightly lower mean values across all iterations. This indicates that the 

modifications to GBO did not result in significant improvement for this case study. For the 

four-cascade structure, as shown in Figure 3(b), the convergence behavior is slightly different. 

Both methods require more iterations to reach the best solution. Although GBO achieves a 

slightly better best result, dFDB consistently maintains a lower objective function value for 

the mean of all iterations, demonstrating its robustness. 

The comparison of the two methods, focusing on the best, average and the worst costs, is 

also presented in Tables 3 and 4. In terms of the best cost, the difference between the two 

methods is negligible. However, in both cases, dFDB shows a better performance in terms of 

the average and worst costs. 

 
Table 3: Performance comparison for case study 1 

Method Best cost Average cost Worst cost 

GBO 394,030,283 420,987,605 607,232,548 

dFDB 395,460,532 408,674,030 435,678,574 

 
Table 4: Performance comparison for case study 2 

Method Best cost Average cost Worst cost 

GBO 256,309,109 298,547,179 591,250,501 

dFDB 256,769,170 275,767,089 315,780,667 

 

Moreover, Table 5 presents the optimum design obtained from the two methods for both 

three and four cascades. Both methods significantly improved the objective function, with 

GBO yielding slightly better results. The objective function improvement for three cascades 

was 72.5% with GBO and 72.4% with dFDB. For four cascades, the improvement was 71.1% 

with GBO and 71% with dFDB. These findings suggest that the modification of GBO into 

dFDB has a minor impact on solving this optimization problem. Additionally, the structure 

with four cascades is less costly than the one with three cascades. 
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Table 5: Best answer of each method for three and four cadcades 

Decision 

Variable 

N=3 N=4 

GBO dFDB GBO dFDB 

P1 (m) 56.97 56.44 40.00 40.03 

P2 (m) 71.84 72.66 42.04 42.02 

P3 (m) 86.20 86.17 67.31 67.28 

P4 (m) - - 80.32 80.44 

L1 (m) 295.78 272.11 147.22 172.77 

L2 (m) 170.28 191.20 155.65 135.76 

L3 (m) 133.10 135.87 159.62 161.30 

L4 (m) - - 129.97 130.29 

Cost 394,030,283 395,460,532 256,309,109 256,769,170 

 

Finally, Table 6 compares the excavation volumes resulting from GBO and dFDB with 

those obtained from other meta-heuristic methods. Although the exact objective functions 

were not provided in the referenced articles, the excavation volumes can still be compared. 

According to Table 6, both GBO and dFDB outperform all other methods in terms of 

excavation volume, demonstrating that these two methods are highly effective for this 

engineering problem. For four cascades, this excavation volume is reduced by GBO 58.69%, 

21.88%, 14.84% and 13% in comparison with ABC, DP, GA-1 and PSO-1; respectively. This 

volume is reduced by dFDB 58.61%, 21.74%, 14.68% and 12.85% in comarison with ABC, 

DP, GA-1 and PSO-1; respectively. The results indicate that both GBO and dFDB deliver 

superior performance compared to alternative optimization approaches, making them suitable 

choices for this specific engineering challenge. 

 
Table 6: Excavation volume in unit width resulted from different optimization methods 

Method N=3 N=4 

GBO 16,947 11,091 

dFDB 16,909 11,111 

PSO-1 [2] - 12,749 

GA-1 [2] - 13,023 

DP [1] 21,286 14,198 

PSO-3 [21] 27,382 25,492 

IPSO [3] 31,574 - 

IABC [3] 31,574 - 

PSO-2 [4] 31,574 25,187 

GA-2 [4] 31,576 27,103 

ABC [4] 31,595 26,846 

GSA [4] 33,389 27,381 

CAA [5] 33,536 20,625 

VP [6] 61,946 38,400 
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7. CONCLUSION 

 
In this study, two gradient-based metaheuristic algorithms, Gradient-Based Optimizer (GBO) 

and dynamic Fitness-Distance Balance (dFDB), were applied to the optimization of cascade 

stilling basins with the aim of enhancing design efficiency and cost-effectiveness. The results 

obtained demonstrate promising performance of both algorithms in achieving cost-effective 

designs. Comparisons were made between the performance of GBO and dFDB across two 

scenarios, involving structures with three and four cascades. 

The convergence curves illustrated consistent convergence to optimal solutions within 50 

iterations for both methods. GBO generally yielded slightly better results in terms of objective 

function values, although dFDB exhibited greater robustness, as indicated by consistently 

lower objective function values across all iterations. Compared to the traditional VP method, 

GBO and dFDB showed objective function improvements of 72.5% and 72.4% for three 

cascades, and 71.1% and 71% for four cascades, respectively. These findings suggest that 

while both methods are effective, the modification of GBO into dFDB has a minor impact on 

optimization results. 

Additionally, comparison of excavation volumes resulting from GBO and dFDB with those 

from other optimization methods (e.g., DP, GA, PSO, and ABC) confirmed the superior 

performance of the utilized metaheuristic approaches. Both GBO and dFDB outperformed 

alternative methods, demonstrating their effectiveness in achieving cost-efficient designs for 

cascade stilling basins. In conclusion, this study underscores the efficacy of gradient-based 

metaheuristic optimization techniques in optimizing the design of cascade stilling basins, 

offering a robust and efficient means of achieving cost-effective designs while balancing 

hydraulic performance requirements. 

For future research endeavors in this domain, two recommendations are proposed. Firstly, 

investigating the applicability of other metaheuristic optimization algorithms, such as chaos 

game optimization [10], colliding bodies optimization [35], and chaotic swarming of particles 

(CSP) [36] combined with new sampling schemes [37], could provide valuable insights into 

their effectiveness and comparative performance in optimizing cascade stilling basin designs. 

Secondly, exploring the integration of machine learning techniques to enhance the predictive 

capabilities of optimization models and further improve the efficiency and accuracy of design 

optimization processes represents a promising avenue for future research in this field. By 

pursuing these avenues, researchers can continue to advance the state-of-the-art in optimizing 

cascade stilling basin designs, ultimately contributing to the development of more resilient 

and cost-effective hydraulic infrastructure solutions. 
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